Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945448911> ?p ?o ?g. }
- W2945448911 endingPage "1489" @default.
- W2945448911 startingPage "1469" @default.
- W2945448911 abstract "Interaction of H2S and basaltic rocks in volcanic geothermal areas can originate from natural up-flow of magmatic fluids or H2S artificial re-injection in relation to geothermal exploitation, both causing pyrite mineralization. We study the possibility to track these processes with electrical impedance field measurements. Electrical Resistivity Tomography (ERT) and Time-Domain Induced Polarization (TDIP) measurements were performed along thirteen 1.24 km long profiles, at three different sites around the eastern caldera rim of the Krafla caldera: (i) a ‘cold altered’ site affected by past hydrothermal circulations, (ii) a hot active site and (iii) a ‘cold un-altered’ site, unaffected by hydrothermal circulations. We present 2-D inversions of direct current (DC) resistivity, maximum phase angle of the electrical impedance (MPA) and relaxation time. The maximum depth of investigation for the MPA is 200 m, obtained in zones of high resistivity, corresponding to fresh and recent unaltered basalt. At the hot and cold altered sites, the field resistivities are compared to in situ borehole logs and laboratory complex resistivity measurements on rock samples from the boreholes. The laboratory complex resistivity was measured at six different pore water conductivities, ranging from 0.02 to 5 S m−1, and frequency in the range 10−2 − 106 Hz. The time-range investigated in our field TDIP measurements was approximately 0.01–8 s. At the cold altered site, the inverted resistivity is consistent with both borehole observations and laboratory measurements. At the hot site, resistivity from field inversion and borehole logs are consistent. Comparing inversion results and borehole logs to laboratory resistivity measured on core samples at room temperature reveals that a correction coefficient for the effect of temperature on resistivity of 6 per cent per °C is appropriate at investigated depths. This exceptionally high temperature correction coefficient suggests a dominant influence of interface and interfoliar conduction, characteristic of smectite-rich rocks, compared to electrolyte conduction. High MPA is attributed to the presence of pyrite at the hot site and of iron-oxides at the cold unaltered site, through joint consideration of MPA together with DC resistivity and relaxation time. TDIP measurements offer the possibility to detect the presence of metallic minerals at shallow depth and distinguish between pyrite and iron-oxides. The abundance of highly conductive smectite in altered volcanic rocks represents a challenge for resolving IP parameters, because the low resistivity created by abundant smectite limits the data quality of the measured voltage discharge." @default.
- W2945448911 created "2019-05-29" @default.
- W2945448911 creator A5005885992 @default.
- W2945448911 creator A5006336956 @default.
- W2945448911 creator A5007207788 @default.
- W2945448911 creator A5009455632 @default.
- W2945448911 creator A5015627056 @default.
- W2945448911 creator A5032125298 @default.
- W2945448911 creator A5034373033 @default.
- W2945448911 creator A5038547193 @default.
- W2945448911 creator A5039949232 @default.
- W2945448911 creator A5044511715 @default.
- W2945448911 creator A5075711899 @default.
- W2945448911 date "2019-05-22" @default.
- W2945448911 modified "2023-10-17" @default.
- W2945448911 title "Electrical resistivity tomography and time-domain induced polarization field investigations of geothermal areas at Krafla, Iceland: comparison to borehole and laboratory frequency-domain electrical observations" @default.
- W2945448911 cites W1002021201 @default.
- W2945448911 cites W1873290621 @default.
- W2945448911 cites W1980043117 @default.
- W2945448911 cites W1984003229 @default.
- W2945448911 cites W2002511961 @default.
- W2945448911 cites W2008712501 @default.
- W2945448911 cites W2011220714 @default.
- W2945448911 cites W2012087537 @default.
- W2945448911 cites W2016726988 @default.
- W2945448911 cites W2027525152 @default.
- W2945448911 cites W2028906036 @default.
- W2945448911 cites W2031401646 @default.
- W2945448911 cites W2036767323 @default.
- W2945448911 cites W2037320027 @default.
- W2945448911 cites W2044282377 @default.
- W2945448911 cites W2054951095 @default.
- W2945448911 cites W2058120694 @default.
- W2945448911 cites W2061910299 @default.
- W2945448911 cites W2064178555 @default.
- W2945448911 cites W2074994308 @default.
- W2945448911 cites W2083450065 @default.
- W2945448911 cites W2084153399 @default.
- W2945448911 cites W2084731841 @default.
- W2945448911 cites W2087452412 @default.
- W2945448911 cites W2096282616 @default.
- W2945448911 cites W2105371752 @default.
- W2945448911 cites W2113476080 @default.
- W2945448911 cites W2128090053 @default.
- W2945448911 cites W2140946534 @default.
- W2945448911 cites W2145189768 @default.
- W2945448911 cites W2152242052 @default.
- W2945448911 cites W2159716167 @default.
- W2945448911 cites W2190370118 @default.
- W2945448911 cites W2244132556 @default.
- W2945448911 cites W2292569461 @default.
- W2945448911 cites W2299507103 @default.
- W2945448911 cites W2315237155 @default.
- W2945448911 cites W2329050192 @default.
- W2945448911 cites W2334470472 @default.
- W2945448911 cites W2502316417 @default.
- W2945448911 cites W2507145023 @default.
- W2945448911 cites W2557705691 @default.
- W2945448911 cites W2687779963 @default.
- W2945448911 cites W2697631136 @default.
- W2945448911 cites W2748475322 @default.
- W2945448911 cites W2762143650 @default.
- W2945448911 cites W2781140031 @default.
- W2945448911 cites W2795074351 @default.
- W2945448911 cites W2800147360 @default.
- W2945448911 cites W2800338636 @default.
- W2945448911 cites W2801014646 @default.
- W2945448911 cites W2805718339 @default.
- W2945448911 cites W2836445908 @default.
- W2945448911 cites W2886620036 @default.
- W2945448911 cites W2891133980 @default.
- W2945448911 cites W2896976825 @default.
- W2945448911 cites W2915205567 @default.
- W2945448911 cites W4322391792 @default.
- W2945448911 cites W566240195 @default.
- W2945448911 cites W595528015 @default.
- W2945448911 doi "https://doi.org/10.1093/gji/ggz240" @default.
- W2945448911 hasPublicationYear "2019" @default.
- W2945448911 type Work @default.
- W2945448911 sameAs 2945448911 @default.
- W2945448911 citedByCount "26" @default.
- W2945448911 countsByYear W29454489112019 @default.
- W2945448911 countsByYear W29454489112020 @default.
- W2945448911 countsByYear W29454489112021 @default.
- W2945448911 countsByYear W29454489112022 @default.
- W2945448911 countsByYear W29454489112023 @default.
- W2945448911 crossrefType "journal-article" @default.
- W2945448911 hasAuthorship W2945448911A5005885992 @default.
- W2945448911 hasAuthorship W2945448911A5006336956 @default.
- W2945448911 hasAuthorship W2945448911A5007207788 @default.
- W2945448911 hasAuthorship W2945448911A5009455632 @default.
- W2945448911 hasAuthorship W2945448911A5015627056 @default.
- W2945448911 hasAuthorship W2945448911A5032125298 @default.
- W2945448911 hasAuthorship W2945448911A5034373033 @default.
- W2945448911 hasAuthorship W2945448911A5038547193 @default.
- W2945448911 hasAuthorship W2945448911A5039949232 @default.
- W2945448911 hasAuthorship W2945448911A5044511715 @default.
- W2945448911 hasAuthorship W2945448911A5075711899 @default.