Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945460897> ?p ?o ?g. }
- W2945460897 endingPage "315" @default.
- W2945460897 startingPage "298" @default.
- W2945460897 abstract "Abstract In this work we present InsideNet , a novel tool built on top of Caffe DL framework aimed to assist researchers in exploring the values generated during the inference procedure of a Convolutional Neural Network (CNN). More precisely, InsideNet allows in-depth analysis of the values of the filters and fmaps within the convolution layers of a trained CNN during an ongoing inference procedure. To do so, InsideNet features three main operation modes. First, the Fmap Visualization Mode (FVM), which allows users to examine in a visual manner the generated fmap channels during the inference procedure of a set of images. Second, the Statistic Collector Mode (SCM), which offers a rich set of statistics for the fmap channels and weights of every convolutional layer. And third, the Histogram Collector Mode (HCM), which allows deeper exploration of value-based patterns by generating the corresponding histograms of the network. In addition, we describe a methodology and a set of standard metrics that can be used to characterize any CNN using InsideNet . We demonstrate the potential of InsideNet by applying it to two real case studies that focus on contemporary lightweight CNNs. The first is a comprehensive characterization of the novel Google’s MobileNets CNN, aimed to find out new patterns that can lead to new hardware optimizations. Specifically, we have found that on average, each fmap could be divided into 8 parts of the same size, each of which with consecutive, identical values. The second case study uses InsideNet for understanding and solving the accuracy drop (around 6%) that appears in SqueezeNet CNN when it is quantized from 32 to 16 bits." @default.
- W2945460897 created "2019-05-29" @default.
- W2945460897 creator A5007832959 @default.
- W2945460897 creator A5010840475 @default.
- W2945460897 creator A5073654457 @default.
- W2945460897 date "2019-11-01" @default.
- W2945460897 modified "2023-09-24" @default.
- W2945460897 title "InsideNet: A tool for characterizing convolutional neural networks" @default.
- W2945460897 cites W1984541135 @default.
- W2945460897 cites W2064675550 @default.
- W2945460897 cites W2086487774 @default.
- W2945460897 cites W2097117768 @default.
- W2945460897 cites W2112796928 @default.
- W2945460897 cites W2117539524 @default.
- W2945460897 cites W2119112357 @default.
- W2945460897 cites W2183341477 @default.
- W2945460897 cites W2194775991 @default.
- W2945460897 cites W2257979135 @default.
- W2945460897 cites W2289252105 @default.
- W2945460897 cites W2515080096 @default.
- W2945460897 cites W2516141709 @default.
- W2945460897 cites W2522548197 @default.
- W2945460897 cites W2550821151 @default.
- W2945460897 cites W2581082771 @default.
- W2945460897 cites W2604319603 @default.
- W2945460897 cites W2612076670 @default.
- W2945460897 cites W2793950911 @default.
- W2945460897 cites W2796013597 @default.
- W2945460897 cites W2883542588 @default.
- W2945460897 cites W2884071170 @default.
- W2945460897 cites W2891336752 @default.
- W2945460897 cites W2903034862 @default.
- W2945460897 cites W2963884515 @default.
- W2945460897 cites W3004171485 @default.
- W2945460897 cites W3124942917 @default.
- W2945460897 cites W4236868170 @default.
- W2945460897 cites W4244024631 @default.
- W2945460897 doi "https://doi.org/10.1016/j.future.2019.05.028" @default.
- W2945460897 hasPublicationYear "2019" @default.
- W2945460897 type Work @default.
- W2945460897 sameAs 2945460897 @default.
- W2945460897 citedByCount "3" @default.
- W2945460897 countsByYear W29454608972020 @default.
- W2945460897 countsByYear W29454608972022 @default.
- W2945460897 countsByYear W29454608972023 @default.
- W2945460897 crossrefType "journal-article" @default.
- W2945460897 hasAuthorship W2945460897A5007832959 @default.
- W2945460897 hasAuthorship W2945460897A5010840475 @default.
- W2945460897 hasAuthorship W2945460897A5073654457 @default.
- W2945460897 hasConcept C105795698 @default.
- W2945460897 hasConcept C111919701 @default.
- W2945460897 hasConcept C11413529 @default.
- W2945460897 hasConcept C115961682 @default.
- W2945460897 hasConcept C120665830 @default.
- W2945460897 hasConcept C121332964 @default.
- W2945460897 hasConcept C124101348 @default.
- W2945460897 hasConcept C153180895 @default.
- W2945460897 hasConcept C154945302 @default.
- W2945460897 hasConcept C177264268 @default.
- W2945460897 hasConcept C192209626 @default.
- W2945460897 hasConcept C199360897 @default.
- W2945460897 hasConcept C2776214188 @default.
- W2945460897 hasConcept C33923547 @default.
- W2945460897 hasConcept C36464697 @default.
- W2945460897 hasConcept C41008148 @default.
- W2945460897 hasConcept C45347329 @default.
- W2945460897 hasConcept C48677424 @default.
- W2945460897 hasConcept C50644808 @default.
- W2945460897 hasConcept C53533937 @default.
- W2945460897 hasConcept C81363708 @default.
- W2945460897 hasConcept C89128539 @default.
- W2945460897 hasConceptScore W2945460897C105795698 @default.
- W2945460897 hasConceptScore W2945460897C111919701 @default.
- W2945460897 hasConceptScore W2945460897C11413529 @default.
- W2945460897 hasConceptScore W2945460897C115961682 @default.
- W2945460897 hasConceptScore W2945460897C120665830 @default.
- W2945460897 hasConceptScore W2945460897C121332964 @default.
- W2945460897 hasConceptScore W2945460897C124101348 @default.
- W2945460897 hasConceptScore W2945460897C153180895 @default.
- W2945460897 hasConceptScore W2945460897C154945302 @default.
- W2945460897 hasConceptScore W2945460897C177264268 @default.
- W2945460897 hasConceptScore W2945460897C192209626 @default.
- W2945460897 hasConceptScore W2945460897C199360897 @default.
- W2945460897 hasConceptScore W2945460897C2776214188 @default.
- W2945460897 hasConceptScore W2945460897C33923547 @default.
- W2945460897 hasConceptScore W2945460897C36464697 @default.
- W2945460897 hasConceptScore W2945460897C41008148 @default.
- W2945460897 hasConceptScore W2945460897C45347329 @default.
- W2945460897 hasConceptScore W2945460897C48677424 @default.
- W2945460897 hasConceptScore W2945460897C50644808 @default.
- W2945460897 hasConceptScore W2945460897C53533937 @default.
- W2945460897 hasConceptScore W2945460897C81363708 @default.
- W2945460897 hasConceptScore W2945460897C89128539 @default.
- W2945460897 hasFunder F4320308798 @default.
- W2945460897 hasLocation W29454608971 @default.
- W2945460897 hasOpenAccess W2945460897 @default.
- W2945460897 hasPrimaryLocation W29454608971 @default.
- W2945460897 hasRelatedWork W2522273752 @default.