Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945462097> ?p ?o ?g. }
- W2945462097 endingPage "433" @default.
- W2945462097 startingPage "425" @default.
- W2945462097 abstract "Various methods have been proposed to identify threshold concentrations of nutrients that would support good ecological status, but the performance of these methods and the influence of other stressors on the underlying models have not been fully evaluated. We used synthetic datasets to compare the performance of ordinary least squares, logistic and quantile regression, as well as, categorical methods based on the distribution of nutrient concentrations categorised by biological status. The synthetic datasets used differed in their levels of variation between explanatory and response variables, and were centered at different positions along the stressor (nutrient) gradient. In order to evaluate the performance of methods in multiple stressor situations, another set of datasets with two stressors was used. Ordinary least squares and logistic regression methods were the most reliable when predicting the threshold concentration when nutrients were the sole stressor; however, both had a tendency to underestimate the threshold when a second stressor was present. In contrast, threshold concentrations produced by categorical methods were strongly influenced by the level of the stressor (nutrient enrichment, in this case) relative to the threshold they were trying to predict (good/moderate in this instance). Although all the methods tested had limitations in the presence of a second stressor, upper quantiles seemed generally appropriate to establish non-precautionary thresholds. For example, upper quantiles may be appropriate when establishing targets for restoration, but not when seeking to minimise deterioration. Selection of an appropriate threshold concentration should also attend to the regulatory regime (i.e. policy requirements and environmental management context) within which it will be used, and the ease of communicating the principles to managers and stakeholders." @default.
- W2945462097 created "2019-05-29" @default.
- W2945462097 creator A5023298271 @default.
- W2945462097 creator A5038372318 @default.
- W2945462097 creator A5048135533 @default.
- W2945462097 creator A5059178632 @default.
- W2945462097 creator A5063368578 @default.
- W2945462097 date "2019-09-01" @default.
- W2945462097 modified "2023-10-07" @default.
- W2945462097 title "Establishing nutrient thresholds in the face of uncertainty and multiple stressors: A comparison of approaches using simulated datasets" @default.
- W2945462097 cites W1494556574 @default.
- W2945462097 cites W1563711975 @default.
- W2945462097 cites W1614518521 @default.
- W2945462097 cites W1923276080 @default.
- W2945462097 cites W1963964211 @default.
- W2945462097 cites W1993031695 @default.
- W2945462097 cites W1999604224 @default.
- W2945462097 cites W2031459422 @default.
- W2945462097 cites W2048371162 @default.
- W2945462097 cites W2050093956 @default.
- W2945462097 cites W2050472197 @default.
- W2945462097 cites W2055383126 @default.
- W2945462097 cites W2058742595 @default.
- W2945462097 cites W2069780521 @default.
- W2945462097 cites W2069912803 @default.
- W2945462097 cites W2079111689 @default.
- W2945462097 cites W2100816697 @default.
- W2945462097 cites W2108922337 @default.
- W2945462097 cites W2110761895 @default.
- W2945462097 cites W2112070508 @default.
- W2945462097 cites W2115268776 @default.
- W2945462097 cites W2121462613 @default.
- W2945462097 cites W2122848119 @default.
- W2945462097 cites W2145350205 @default.
- W2945462097 cites W2167239677 @default.
- W2945462097 cites W2187495605 @default.
- W2945462097 cites W2236105931 @default.
- W2945462097 cites W2344705844 @default.
- W2945462097 cites W2492213898 @default.
- W2945462097 cites W2587186206 @default.
- W2945462097 cites W2602071540 @default.
- W2945462097 cites W2773899957 @default.
- W2945462097 cites W2789473938 @default.
- W2945462097 cites W2789599904 @default.
- W2945462097 cites W2802792734 @default.
- W2945462097 cites W2892786885 @default.
- W2945462097 cites W2904201759 @default.
- W2945462097 cites W2946681027 @default.
- W2945462097 cites W3123218647 @default.
- W2945462097 cites W4241996101 @default.
- W2945462097 cites W4296247835 @default.
- W2945462097 doi "https://doi.org/10.1016/j.scitotenv.2019.05.343" @default.
- W2945462097 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31154215" @default.
- W2945462097 hasPublicationYear "2019" @default.
- W2945462097 type Work @default.
- W2945462097 sameAs 2945462097 @default.
- W2945462097 citedByCount "15" @default.
- W2945462097 countsByYear W29454620972020 @default.
- W2945462097 countsByYear W29454620972021 @default.
- W2945462097 countsByYear W29454620972022 @default.
- W2945462097 countsByYear W29454620972023 @default.
- W2945462097 crossrefType "journal-article" @default.
- W2945462097 hasAuthorship W2945462097A5023298271 @default.
- W2945462097 hasAuthorship W2945462097A5038372318 @default.
- W2945462097 hasAuthorship W2945462097A5048135533 @default.
- W2945462097 hasAuthorship W2945462097A5059178632 @default.
- W2945462097 hasAuthorship W2945462097A5063368578 @default.
- W2945462097 hasBestOaLocation W29454620972 @default.
- W2945462097 hasConcept C105795698 @default.
- W2945462097 hasConcept C118671147 @default.
- W2945462097 hasConcept C125370674 @default.
- W2945462097 hasConcept C142796444 @default.
- W2945462097 hasConcept C149782125 @default.
- W2945462097 hasConcept C151730666 @default.
- W2945462097 hasConcept C151956035 @default.
- W2945462097 hasConcept C15744967 @default.
- W2945462097 hasConcept C18903297 @default.
- W2945462097 hasConcept C22354355 @default.
- W2945462097 hasConcept C2779343474 @default.
- W2945462097 hasConcept C33923547 @default.
- W2945462097 hasConcept C39432304 @default.
- W2945462097 hasConcept C5274069 @default.
- W2945462097 hasConcept C63817138 @default.
- W2945462097 hasConcept C70410870 @default.
- W2945462097 hasConcept C86803240 @default.
- W2945462097 hasConcept C99656134 @default.
- W2945462097 hasConceptScore W2945462097C105795698 @default.
- W2945462097 hasConceptScore W2945462097C118671147 @default.
- W2945462097 hasConceptScore W2945462097C125370674 @default.
- W2945462097 hasConceptScore W2945462097C142796444 @default.
- W2945462097 hasConceptScore W2945462097C149782125 @default.
- W2945462097 hasConceptScore W2945462097C151730666 @default.
- W2945462097 hasConceptScore W2945462097C151956035 @default.
- W2945462097 hasConceptScore W2945462097C15744967 @default.
- W2945462097 hasConceptScore W2945462097C18903297 @default.
- W2945462097 hasConceptScore W2945462097C22354355 @default.
- W2945462097 hasConceptScore W2945462097C2779343474 @default.
- W2945462097 hasConceptScore W2945462097C33923547 @default.