Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945490636> ?p ?o ?g. }
- W2945490636 abstract "We propose a method for classical simulation of finite-dimensional quantum systems, based on sampling from a quasiprobability distribution, i.e., a generalized Wigner function. Our construction applies to all finite dimensions, with the most interesting case being that of qubits. For multiple qubits, we find that quantum computation by Clifford gates and Pauli measurements on magic states can be efficiently classically simulated if the quasiprobability distribution of the magic states is non-negative. This provides the so far missing qubit counterpart of the corresponding result [V. Veitch et al., New J. Phys. 14, 113011 (2012)] applying only to odd dimension. Our approach is more general than previous ones based on mixtures of stabilizer states. Namely, all mixtures of stabilizer states can be efficiently simulated, but for any number of qubits there also exist efficiently simulable states outside the stabilizer polytope. Further, our simulation method extends to negative quasiprobability distributions, where it provides amplitude estimation. The simulation cost is then proportional to a robustness measure squared. For all quantum states, this robustness is smaller than or equal to robustness of magic." @default.
- W2945490636 created "2019-05-29" @default.
- W2945490636 creator A5011282980 @default.
- W2945490636 creator A5020483167 @default.
- W2945490636 creator A5033714290 @default.
- W2945490636 creator A5052241106 @default.
- W2945490636 creator A5080606237 @default.
- W2945490636 date "2020-01-31" @default.
- W2945490636 modified "2023-10-10" @default.
- W2945490636 title "Phase-space-simulation method for quantum computation with magic states on qubits" @default.
- W2945490636 cites W1501381924 @default.
- W2945490636 cites W1731114062 @default.
- W2945490636 cites W1796936645 @default.
- W2945490636 cites W189715775 @default.
- W2945490636 cites W1971674902 @default.
- W2945490636 cites W1986407511 @default.
- W2945490636 cites W1993688167 @default.
- W2945490636 cites W1995642696 @default.
- W2945490636 cites W2020747741 @default.
- W2945490636 cites W2038129354 @default.
- W2945490636 cites W2039772562 @default.
- W2945490636 cites W2062712424 @default.
- W2945490636 cites W2073384645 @default.
- W2945490636 cites W2075497674 @default.
- W2945490636 cites W2076968034 @default.
- W2945490636 cites W2079294297 @default.
- W2945490636 cites W2086086067 @default.
- W2945490636 cites W2094835105 @default.
- W2945490636 cites W2122187744 @default.
- W2945490636 cites W2133863481 @default.
- W2945490636 cites W2135830616 @default.
- W2945490636 cites W2145928944 @default.
- W2945490636 cites W2148132004 @default.
- W2945490636 cites W2179731956 @default.
- W2945490636 cites W2269846093 @default.
- W2945490636 cites W2524307097 @default.
- W2945490636 cites W2545297326 @default.
- W2945490636 cites W2760385998 @default.
- W2945490636 cites W2783279527 @default.
- W2945490636 cites W2784975957 @default.
- W2945490636 cites W2795249674 @default.
- W2945490636 cites W2912868391 @default.
- W2945490636 cites W2952877508 @default.
- W2945490636 cites W2957955710 @default.
- W2945490636 cites W3101778975 @default.
- W2945490636 cites W3103048972 @default.
- W2945490636 cites W3103699324 @default.
- W2945490636 cites W3105454500 @default.
- W2945490636 cites W3165898261 @default.
- W2945490636 cites W4238804566 @default.
- W2945490636 doi "https://doi.org/10.1103/physreva.101.012350" @default.
- W2945490636 hasPublicationYear "2020" @default.
- W2945490636 type Work @default.
- W2945490636 sameAs 2945490636 @default.
- W2945490636 citedByCount "36" @default.
- W2945490636 countsByYear W29454906362019 @default.
- W2945490636 countsByYear W29454906362020 @default.
- W2945490636 countsByYear W29454906362021 @default.
- W2945490636 countsByYear W29454906362022 @default.
- W2945490636 countsByYear W29454906362023 @default.
- W2945490636 crossrefType "journal-article" @default.
- W2945490636 hasAuthorship W2945490636A5011282980 @default.
- W2945490636 hasAuthorship W2945490636A5020483167 @default.
- W2945490636 hasAuthorship W2945490636A5033714290 @default.
- W2945490636 hasAuthorship W2945490636A5052241106 @default.
- W2945490636 hasAuthorship W2945490636A5080606237 @default.
- W2945490636 hasBestOaLocation W29454906362 @default.
- W2945490636 hasConcept C104317684 @default.
- W2945490636 hasConcept C110340908 @default.
- W2945490636 hasConcept C121332964 @default.
- W2945490636 hasConcept C121864883 @default.
- W2945490636 hasConcept C151077058 @default.
- W2945490636 hasConcept C15706264 @default.
- W2945490636 hasConcept C185592680 @default.
- W2945490636 hasConcept C203087015 @default.
- W2945490636 hasConcept C33923547 @default.
- W2945490636 hasConcept C55493867 @default.
- W2945490636 hasConcept C58053490 @default.
- W2945490636 hasConcept C62520636 @default.
- W2945490636 hasConcept C63479239 @default.
- W2945490636 hasConcept C84114770 @default.
- W2945490636 hasConceptScore W2945490636C104317684 @default.
- W2945490636 hasConceptScore W2945490636C110340908 @default.
- W2945490636 hasConceptScore W2945490636C121332964 @default.
- W2945490636 hasConceptScore W2945490636C121864883 @default.
- W2945490636 hasConceptScore W2945490636C151077058 @default.
- W2945490636 hasConceptScore W2945490636C15706264 @default.
- W2945490636 hasConceptScore W2945490636C185592680 @default.
- W2945490636 hasConceptScore W2945490636C203087015 @default.
- W2945490636 hasConceptScore W2945490636C33923547 @default.
- W2945490636 hasConceptScore W2945490636C55493867 @default.
- W2945490636 hasConceptScore W2945490636C58053490 @default.
- W2945490636 hasConceptScore W2945490636C62520636 @default.
- W2945490636 hasConceptScore W2945490636C63479239 @default.
- W2945490636 hasConceptScore W2945490636C84114770 @default.
- W2945490636 hasFunder F4320309949 @default.
- W2945490636 hasFunder F4320334593 @default.
- W2945490636 hasFunder F4320334678 @default.
- W2945490636 hasFunder F4320335254 @default.
- W2945490636 hasIssue "1" @default.