Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945495424> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2945495424 abstract "Learning is the heart of intelligence. The focus in machine learning is to automate methods that achieve objectives, improve predictions or encourage informed behavior. Feature selection is a vital step in data analysis that often reduces dataset dimensionality by eliminating irrelevant and/or redundant attributes to simplify the learning process or improve outcomes’ quality. This research critically analyses different filter methods based on ranking procedures (Information Gain (IG), Chi-square (CHI), V-score, Fisher Score, mRMR, Va and ReliefF) and identifies possible challenges that arise. We particularly concentrate on how threshold determination can affect results of different filter methods based on ranked scores. We show that this issue is vital, especially in the era of big data in which users deal with attributes in the magnitudes of tens of thousands with only a limited number of instances." @default.
- W2945495424 created "2019-05-29" @default.
- W2945495424 creator A5000357730 @default.
- W2945495424 creator A5002204703 @default.
- W2945495424 creator A5003244142 @default.
- W2945495424 creator A5057725721 @default.
- W2945495424 date "2019-04-01" @default.
- W2945495424 modified "2023-10-07" @default.
- W2945495424 title "Feature Selection: Filter Methods Performance Challenges" @default.
- W2945495424 cites W140777655 @default.
- W2945495424 cites W1500895378 @default.
- W2945495424 cites W1730693163 @default.
- W2945495424 cites W1833977909 @default.
- W2945495424 cites W2555509818 @default.
- W2945495424 cites W2595467185 @default.
- W2945495424 cites W2739734813 @default.
- W2945495424 cites W2790175216 @default.
- W2945495424 cites W2801552647 @default.
- W2945495424 cites W2809960885 @default.
- W2945495424 cites W2891567266 @default.
- W2945495424 cites W2914108393 @default.
- W2945495424 cites W323404752 @default.
- W2945495424 cites W4236137412 @default.
- W2945495424 doi "https://doi.org/10.1109/iccisci.2019.8716478" @default.
- W2945495424 hasPublicationYear "2019" @default.
- W2945495424 type Work @default.
- W2945495424 sameAs 2945495424 @default.
- W2945495424 citedByCount "33" @default.
- W2945495424 countsByYear W29454954242012 @default.
- W2945495424 countsByYear W29454954242019 @default.
- W2945495424 countsByYear W29454954242020 @default.
- W2945495424 countsByYear W29454954242021 @default.
- W2945495424 countsByYear W29454954242022 @default.
- W2945495424 countsByYear W29454954242023 @default.
- W2945495424 crossrefType "proceedings-article" @default.
- W2945495424 hasAuthorship W2945495424A5000357730 @default.
- W2945495424 hasAuthorship W2945495424A5002204703 @default.
- W2945495424 hasAuthorship W2945495424A5003244142 @default.
- W2945495424 hasAuthorship W2945495424A5057725721 @default.
- W2945495424 hasConcept C106131492 @default.
- W2945495424 hasConcept C111030470 @default.
- W2945495424 hasConcept C111919701 @default.
- W2945495424 hasConcept C119857082 @default.
- W2945495424 hasConcept C120665830 @default.
- W2945495424 hasConcept C121332964 @default.
- W2945495424 hasConcept C124101348 @default.
- W2945495424 hasConcept C138885662 @default.
- W2945495424 hasConcept C148483581 @default.
- W2945495424 hasConcept C154945302 @default.
- W2945495424 hasConcept C189430467 @default.
- W2945495424 hasConcept C192209626 @default.
- W2945495424 hasConcept C2776401178 @default.
- W2945495424 hasConcept C31972630 @default.
- W2945495424 hasConcept C41008148 @default.
- W2945495424 hasConcept C41895202 @default.
- W2945495424 hasConcept C70518039 @default.
- W2945495424 hasConcept C75684735 @default.
- W2945495424 hasConcept C81917197 @default.
- W2945495424 hasConcept C98045186 @default.
- W2945495424 hasConceptScore W2945495424C106131492 @default.
- W2945495424 hasConceptScore W2945495424C111030470 @default.
- W2945495424 hasConceptScore W2945495424C111919701 @default.
- W2945495424 hasConceptScore W2945495424C119857082 @default.
- W2945495424 hasConceptScore W2945495424C120665830 @default.
- W2945495424 hasConceptScore W2945495424C121332964 @default.
- W2945495424 hasConceptScore W2945495424C124101348 @default.
- W2945495424 hasConceptScore W2945495424C138885662 @default.
- W2945495424 hasConceptScore W2945495424C148483581 @default.
- W2945495424 hasConceptScore W2945495424C154945302 @default.
- W2945495424 hasConceptScore W2945495424C189430467 @default.
- W2945495424 hasConceptScore W2945495424C192209626 @default.
- W2945495424 hasConceptScore W2945495424C2776401178 @default.
- W2945495424 hasConceptScore W2945495424C31972630 @default.
- W2945495424 hasConceptScore W2945495424C41008148 @default.
- W2945495424 hasConceptScore W2945495424C41895202 @default.
- W2945495424 hasConceptScore W2945495424C70518039 @default.
- W2945495424 hasConceptScore W2945495424C75684735 @default.
- W2945495424 hasConceptScore W2945495424C81917197 @default.
- W2945495424 hasConceptScore W2945495424C98045186 @default.
- W2945495424 hasLocation W29454954241 @default.
- W2945495424 hasOpenAccess W2945495424 @default.
- W2945495424 hasPrimaryLocation W29454954241 @default.
- W2945495424 hasRelatedWork W1586627725 @default.
- W2945495424 hasRelatedWork W1968752118 @default.
- W2945495424 hasRelatedWork W2019784121 @default.
- W2945495424 hasRelatedWork W2369273316 @default.
- W2945495424 hasRelatedWork W2541438111 @default.
- W2945495424 hasRelatedWork W2799291336 @default.
- W2945495424 hasRelatedWork W2890644709 @default.
- W2945495424 hasRelatedWork W4253153537 @default.
- W2945495424 hasRelatedWork W2114089515 @default.
- W2945495424 hasRelatedWork W2510416153 @default.
- W2945495424 isParatext "false" @default.
- W2945495424 isRetracted "false" @default.
- W2945495424 magId "2945495424" @default.
- W2945495424 workType "article" @default.