Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945495575> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2945495575 abstract "Accident risk assessment is a research field that has been started in the 60’s, in particular on the basis of «risk triangle» theory proposed by Frank E. Bird in 1969. This theory of risk uses the notion of «near misses» observation that leads to «safety rules» in a large number of application fields such as manufacturing, firemen, etc. Note that this approach is the opposite of what some automotive teams are currently starting (observing «everything» recorded on a big database): Most of the time nothing happens (no incident, no surprise). Risk experts do not do this. They are focused on «near misses» observation only, instead of observing the global process where at least 99.99% of data are not relevant for risk assessment. And observation of accidents is not relevant neither: accident is a rare combination of «near miss» situation and bad luck (stochastic process). Risk experts work on safety rules made to keep the situation as far as possible from near miss. In the domain of road safety, this approach has been developed mainly by road infrastructure experts in order to understand deep and deterministic reasons of near misses and propose ways of shaping roads and road signs in order to minimize it. This paper deals with presentation of results of a 15 years long collaborative research that extracted knowledge from road infrastructure experts and researchers, and put it into an on-board knowledge-based artificial intelligence in order to score driving risk dynamically and in real time. Indeed, there is no inherently bad driving behaviour and there is no inherently dangerous infrastructures, contrary to what many people think (black spots, harsh/brutal driving behaviour, etc.). It is when driving behaviour is inappropriate to driving context that driving risk appears. Driving context is described by infrastructure characteristics (geometry and functionality), by location of other users of the infrastructure (cars, trucks, bicycles, pedestrians, …), by weather conditions, etc. In this list, infrastructure takes 75% of the global weight, and then the artificial intelligence uses the digital map, and does pattern recognition on this digital map, in order to describe infrastructure context. ADAS sensors give additional inputs such as inter-distance, size of free space, time to collision, visibility measurement … Then driving risk depends dynamically on the context (infrastructure, traffic, visibility, …) and on the driving behaviour, through a sensor plus map fusion, made by the artificial intelligence. This artificial intelligence has been integrated inside a software API called SafetyNex that is already under deployment. This tool can alert human driver before dangerous situation, letting time to smoothly slow down and avoid potential bad surprises. Of course it can also alert the AD (Autonomous driving system) in order to automate a cautious driving behaviour (in urban areas for instance). The Artificial Intelligence estimates driving risk 20 times per second and this paper shows on real uses cases how this risk assessment anticipates potential danger. In addition, risk profiles are recorded on the cloud. We think that this risk profile recording (both for human driver and autonomous car) can be a start of comparison in terms of road safety, and a good communication vector from car manufacturers to car insurance that will need «proofs» if they ever propose a special cheap pricing. It is important as car insurers are expected to pay a part of the value brought by ADAS and autonomous vehicle because they act on risk. Of course, car insurer will accept if and only if ADAS and AD reduce accident rate and cost loss. So we conclude on the economic value of artificial intelligence in connected and intelligent cars using the cloud to exchange risk data." @default.
- W2945495575 created "2019-05-29" @default.
- W2945495575 creator A5003484833 @default.
- W2945495575 creator A5017938106 @default.
- W2945495575 creator A5035373953 @default.
- W2945495575 date "2019-01-01" @default.
- W2945495575 modified "2023-09-26" @default.
- W2945495575 title "Real Time Driving Risk Assessment for Onboard Accident Prevention: Application to Vocal Driving Risk Assistant, ADAS, and Autonomous Driving" @default.
- W2945495575 doi "https://doi.org/10.1007/978-3-030-14156-1_23" @default.
- W2945495575 hasPublicationYear "2019" @default.
- W2945495575 type Work @default.
- W2945495575 sameAs 2945495575 @default.
- W2945495575 citedByCount "1" @default.
- W2945495575 countsByYear W29454955752022 @default.
- W2945495575 crossrefType "book-chapter" @default.
- W2945495575 hasAuthorship W2945495575A5003484833 @default.
- W2945495575 hasAuthorship W2945495575A5017938106 @default.
- W2945495575 hasAuthorship W2945495575A5035373953 @default.
- W2945495575 hasConcept C10138342 @default.
- W2945495575 hasConcept C105795698 @default.
- W2945495575 hasConcept C111919701 @default.
- W2945495575 hasConcept C112930515 @default.
- W2945495575 hasConcept C12174686 @default.
- W2945495575 hasConcept C127413603 @default.
- W2945495575 hasConcept C138885662 @default.
- W2945495575 hasConcept C144133560 @default.
- W2945495575 hasConcept C145804949 @default.
- W2945495575 hasConcept C146978453 @default.
- W2945495575 hasConcept C15744967 @default.
- W2945495575 hasConcept C182306322 @default.
- W2945495575 hasConcept C206713868 @default.
- W2945495575 hasConcept C27206212 @default.
- W2945495575 hasConcept C2777317252 @default.
- W2945495575 hasConcept C2780343955 @default.
- W2945495575 hasConcept C33923547 @default.
- W2945495575 hasConcept C38652104 @default.
- W2945495575 hasConcept C41008148 @default.
- W2945495575 hasConcept C42475967 @default.
- W2945495575 hasConcept C526921623 @default.
- W2945495575 hasConcept C61783943 @default.
- W2945495575 hasConcept C77595967 @default.
- W2945495575 hasConcept C77805123 @default.
- W2945495575 hasConcept C98045186 @default.
- W2945495575 hasConceptScore W2945495575C10138342 @default.
- W2945495575 hasConceptScore W2945495575C105795698 @default.
- W2945495575 hasConceptScore W2945495575C111919701 @default.
- W2945495575 hasConceptScore W2945495575C112930515 @default.
- W2945495575 hasConceptScore W2945495575C12174686 @default.
- W2945495575 hasConceptScore W2945495575C127413603 @default.
- W2945495575 hasConceptScore W2945495575C138885662 @default.
- W2945495575 hasConceptScore W2945495575C144133560 @default.
- W2945495575 hasConceptScore W2945495575C145804949 @default.
- W2945495575 hasConceptScore W2945495575C146978453 @default.
- W2945495575 hasConceptScore W2945495575C15744967 @default.
- W2945495575 hasConceptScore W2945495575C182306322 @default.
- W2945495575 hasConceptScore W2945495575C206713868 @default.
- W2945495575 hasConceptScore W2945495575C27206212 @default.
- W2945495575 hasConceptScore W2945495575C2777317252 @default.
- W2945495575 hasConceptScore W2945495575C2780343955 @default.
- W2945495575 hasConceptScore W2945495575C33923547 @default.
- W2945495575 hasConceptScore W2945495575C38652104 @default.
- W2945495575 hasConceptScore W2945495575C41008148 @default.
- W2945495575 hasConceptScore W2945495575C42475967 @default.
- W2945495575 hasConceptScore W2945495575C526921623 @default.
- W2945495575 hasConceptScore W2945495575C61783943 @default.
- W2945495575 hasConceptScore W2945495575C77595967 @default.
- W2945495575 hasConceptScore W2945495575C77805123 @default.
- W2945495575 hasConceptScore W2945495575C98045186 @default.
- W2945495575 hasLocation W29454955751 @default.
- W2945495575 hasOpenAccess W2945495575 @default.
- W2945495575 hasPrimaryLocation W29454955751 @default.
- W2945495575 hasRelatedWork W115135345 @default.
- W2945495575 hasRelatedWork W2014384157 @default.
- W2945495575 hasRelatedWork W2016002990 @default.
- W2945495575 hasRelatedWork W2034542596 @default.
- W2945495575 hasRelatedWork W2179919925 @default.
- W2945495575 hasRelatedWork W2417158417 @default.
- W2945495575 hasRelatedWork W2945495575 @default.
- W2945495575 hasRelatedWork W2989283182 @default.
- W2945495575 hasRelatedWork W3136050648 @default.
- W2945495575 hasRelatedWork W4231978777 @default.
- W2945495575 isParatext "false" @default.
- W2945495575 isRetracted "false" @default.
- W2945495575 magId "2945495575" @default.
- W2945495575 workType "book-chapter" @default.