Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945553544> ?p ?o ?g. }
- W2945553544 endingPage "64185" @default.
- W2945553544 startingPage "64177" @default.
- W2945553544 abstract "China’s soybean supply and demand are seriously imbalanced. It is crucial to improve the level of soybean breeding. Hundred-grain weight is one of the most essential phenotypic parameters for crop breeding. Accurate soybean seed counting is a key step for 100-grain weight. There are several seed counting methods, which have their own limitations one way or the other. Among these, manual counting is time-consuming, electronic automatic seed counter devices are expensive and their counting speed is very slow, and the traditional digital image processing techniques are not suitable for seed counting based on individual pod images. This paper attempted to develop a method that would combine the density estimation-based methods and the convolution neural network (CNN)-based methods to accurately estimate the seed count from an individual soybean pod image with a single perspective. In this paper, we first introduced a new large-scale seed counting dataset, named Soybean-pod. The dataset contains 500 annotated pod images with a total of 32 126 seeds and is the largest annotated dataset for soybean seed counting so far. Simultaneously, we used annotation information to generate a ground-truth density map by convolving a Gaussian kernel and, then, devised a simple but effective method that would elucidate pod images to a seed density map using a two-column CNN (TCNN) and thus accomplish seed counting ultimately. We conducted relevant experiments from three aspects on the new dataset to verify the effectiveness of our model and method, which provided 13.21 mean absolute error (MAE) and 17.62 mean squared error (mse). In addition, our research results showed that deep learning techniques can be easily adapted to precision tasks for plant phenotyping and breeding purposes." @default.
- W2945553544 created "2019-05-29" @default.
- W2945553544 creator A5000178744 @default.
- W2945553544 creator A5013019306 @default.
- W2945553544 creator A5013774822 @default.
- W2945553544 creator A5027857869 @default.
- W2945553544 creator A5041574734 @default.
- W2945553544 creator A5067533929 @default.
- W2945553544 creator A5078092833 @default.
- W2945553544 date "2019-01-01" @default.
- W2945553544 modified "2023-10-16" @default.
- W2945553544 title "Soybean Seed Counting Based on Pod Image Using Two-Column Convolution Neural Network" @default.
- W2945553544 cites W1139085045 @default.
- W2945553544 cites W1985870845 @default.
- W2945553544 cites W1995494326 @default.
- W2945553544 cites W1998863922 @default.
- W2945553544 cites W2012163867 @default.
- W2945553544 cites W2031454541 @default.
- W2945553544 cites W2036657686 @default.
- W2945553544 cites W2044128075 @default.
- W2945553544 cites W2063427034 @default.
- W2945553544 cites W2096229530 @default.
- W2945553544 cites W2112733525 @default.
- W2945553544 cites W2161558103 @default.
- W2945553544 cites W2161841955 @default.
- W2945553544 cites W2185489349 @default.
- W2945553544 cites W2463631526 @default.
- W2945553544 cites W2467863620 @default.
- W2945553544 cites W2491598107 @default.
- W2945553544 cites W2517615595 @default.
- W2945553544 cites W2625680238 @default.
- W2945553544 cites W2741077351 @default.
- W2945553544 cites W2790979755 @default.
- W2945553544 cites W2799759580 @default.
- W2945553544 cites W2808170337 @default.
- W2945553544 cites W2891667148 @default.
- W2945553544 cites W2919115771 @default.
- W2945553544 cites W2963754008 @default.
- W2945553544 cites W2964209782 @default.
- W2945553544 cites W2964264515 @default.
- W2945553544 doi "https://doi.org/10.1109/access.2019.2916931" @default.
- W2945553544 hasPublicationYear "2019" @default.
- W2945553544 type Work @default.
- W2945553544 sameAs 2945553544 @default.
- W2945553544 citedByCount "32" @default.
- W2945553544 countsByYear W29455535442019 @default.
- W2945553544 countsByYear W29455535442020 @default.
- W2945553544 countsByYear W29455535442021 @default.
- W2945553544 countsByYear W29455535442022 @default.
- W2945553544 countsByYear W29455535442023 @default.
- W2945553544 crossrefType "journal-article" @default.
- W2945553544 hasAuthorship W2945553544A5000178744 @default.
- W2945553544 hasAuthorship W2945553544A5013019306 @default.
- W2945553544 hasAuthorship W2945553544A5013774822 @default.
- W2945553544 hasAuthorship W2945553544A5027857869 @default.
- W2945553544 hasAuthorship W2945553544A5041574734 @default.
- W2945553544 hasAuthorship W2945553544A5067533929 @default.
- W2945553544 hasAuthorship W2945553544A5078092833 @default.
- W2945553544 hasBestOaLocation W29455535441 @default.
- W2945553544 hasConcept C114614502 @default.
- W2945553544 hasConcept C137776501 @default.
- W2945553544 hasConcept C146849305 @default.
- W2945553544 hasConcept C153180895 @default.
- W2945553544 hasConcept C154945302 @default.
- W2945553544 hasConcept C33923547 @default.
- W2945553544 hasConcept C41008148 @default.
- W2945553544 hasConcept C50644808 @default.
- W2945553544 hasConcept C6557445 @default.
- W2945553544 hasConcept C74193536 @default.
- W2945553544 hasConcept C81363708 @default.
- W2945553544 hasConcept C86803240 @default.
- W2945553544 hasConceptScore W2945553544C114614502 @default.
- W2945553544 hasConceptScore W2945553544C137776501 @default.
- W2945553544 hasConceptScore W2945553544C146849305 @default.
- W2945553544 hasConceptScore W2945553544C153180895 @default.
- W2945553544 hasConceptScore W2945553544C154945302 @default.
- W2945553544 hasConceptScore W2945553544C33923547 @default.
- W2945553544 hasConceptScore W2945553544C41008148 @default.
- W2945553544 hasConceptScore W2945553544C50644808 @default.
- W2945553544 hasConceptScore W2945553544C6557445 @default.
- W2945553544 hasConceptScore W2945553544C74193536 @default.
- W2945553544 hasConceptScore W2945553544C81363708 @default.
- W2945553544 hasConceptScore W2945553544C86803240 @default.
- W2945553544 hasFunder F4320321543 @default.
- W2945553544 hasLocation W29455535441 @default.
- W2945553544 hasOpenAccess W2945553544 @default.
- W2945553544 hasPrimaryLocation W29455535441 @default.
- W2945553544 hasRelatedWork W1991415308 @default.
- W2945553544 hasRelatedWork W2049995177 @default.
- W2945553544 hasRelatedWork W2352729895 @default.
- W2945553544 hasRelatedWork W2362666365 @default.
- W2945553544 hasRelatedWork W2375444032 @default.
- W2945553544 hasRelatedWork W2381730216 @default.
- W2945553544 hasRelatedWork W3142541575 @default.
- W2945553544 hasRelatedWork W3216700519 @default.
- W2945553544 hasRelatedWork W4313588295 @default.
- W2945553544 hasRelatedWork W4383033865 @default.
- W2945553544 hasVolume "7" @default.