Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945565341> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2945565341 endingPage "57" @default.
- W2945565341 startingPage "41" @default.
- W2945565341 abstract "A gradient aggregate asymptotical smoothing algorithm is proposed for training fuzzy neural networks (FNNs), which develops the smoothing algorithm (SA) described in Li et al. (2017). By introducing the framework of asymptotical approximation to the algorithm, any degree of approximation for the error function of max–min FNNs can be obtained by an aggregate smoothing function with a variable precision parameter. The algorithm minimizes a sequence of asymptotically approximate functions using the steepest descent algorithm for solving a nondifferentiable max–min optimization problem of max–min FNNs. The proposed update rule on the precision parameter reconciles the conflict between the high-accuracy approximation and the numerical ill-conditioning. The algorithm is globally convergent under Armijo line search. As shown in the simulation results for three artificial examples and a real-world problem in fault diagnosis, compared with SA, the proposed algorithm can efficiently deal with the numerical oscillations and has better performance." @default.
- W2945565341 created "2019-05-29" @default.
- W2945565341 creator A5045048134 @default.
- W2945565341 creator A5070938702 @default.
- W2945565341 creator A5080801699 @default.
- W2945565341 date "2019-09-01" @default.
- W2945565341 modified "2023-10-18" @default.
- W2945565341 title "A gradient aggregate asymptotical smoothing algorithm for training max–min fuzzy neural networks" @default.
- W2945565341 cites W1494875490 @default.
- W2945565341 cites W1965755769 @default.
- W2945565341 cites W1967201317 @default.
- W2945565341 cites W1974698372 @default.
- W2945565341 cites W2007187232 @default.
- W2945565341 cites W2061821032 @default.
- W2945565341 cites W2062517613 @default.
- W2945565341 cites W2065274920 @default.
- W2945565341 cites W2070693532 @default.
- W2945565341 cites W2071614767 @default.
- W2945565341 cites W2076459403 @default.
- W2945565341 cites W2082381659 @default.
- W2945565341 cites W2097220942 @default.
- W2945565341 cites W2109091112 @default.
- W2945565341 cites W2134736495 @default.
- W2945565341 cites W2591999327 @default.
- W2945565341 cites W2613648727 @default.
- W2945565341 cites W2794065264 @default.
- W2945565341 cites W2801058617 @default.
- W2945565341 cites W2896962811 @default.
- W2945565341 doi "https://doi.org/10.1016/j.neucom.2019.05.070" @default.
- W2945565341 hasPublicationYear "2019" @default.
- W2945565341 type Work @default.
- W2945565341 sameAs 2945565341 @default.
- W2945565341 citedByCount "1" @default.
- W2945565341 countsByYear W29455653412022 @default.
- W2945565341 crossrefType "journal-article" @default.
- W2945565341 hasAuthorship W2945565341A5045048134 @default.
- W2945565341 hasAuthorship W2945565341A5070938702 @default.
- W2945565341 hasAuthorship W2945565341A5080801699 @default.
- W2945565341 hasConcept C105795698 @default.
- W2945565341 hasConcept C11413529 @default.
- W2945565341 hasConcept C126255220 @default.
- W2945565341 hasConcept C14036430 @default.
- W2945565341 hasConcept C153258448 @default.
- W2945565341 hasConcept C154945302 @default.
- W2945565341 hasConcept C199360897 @default.
- W2945565341 hasConcept C2777735758 @default.
- W2945565341 hasConcept C33923547 @default.
- W2945565341 hasConcept C3770464 @default.
- W2945565341 hasConcept C41008148 @default.
- W2945565341 hasConcept C50644808 @default.
- W2945565341 hasConcept C78458016 @default.
- W2945565341 hasConcept C85522705 @default.
- W2945565341 hasConcept C86803240 @default.
- W2945565341 hasConceptScore W2945565341C105795698 @default.
- W2945565341 hasConceptScore W2945565341C11413529 @default.
- W2945565341 hasConceptScore W2945565341C126255220 @default.
- W2945565341 hasConceptScore W2945565341C14036430 @default.
- W2945565341 hasConceptScore W2945565341C153258448 @default.
- W2945565341 hasConceptScore W2945565341C154945302 @default.
- W2945565341 hasConceptScore W2945565341C199360897 @default.
- W2945565341 hasConceptScore W2945565341C2777735758 @default.
- W2945565341 hasConceptScore W2945565341C33923547 @default.
- W2945565341 hasConceptScore W2945565341C3770464 @default.
- W2945565341 hasConceptScore W2945565341C41008148 @default.
- W2945565341 hasConceptScore W2945565341C50644808 @default.
- W2945565341 hasConceptScore W2945565341C78458016 @default.
- W2945565341 hasConceptScore W2945565341C85522705 @default.
- W2945565341 hasConceptScore W2945565341C86803240 @default.
- W2945565341 hasFunder F4320321001 @default.
- W2945565341 hasLocation W29455653411 @default.
- W2945565341 hasOpenAccess W2945565341 @default.
- W2945565341 hasPrimaryLocation W29455653411 @default.
- W2945565341 hasRelatedWork W2096631402 @default.
- W2945565341 hasRelatedWork W2119950020 @default.
- W2945565341 hasRelatedWork W2128886773 @default.
- W2945565341 hasRelatedWork W2210190271 @default.
- W2945565341 hasRelatedWork W2806166494 @default.
- W2945565341 hasRelatedWork W2943305848 @default.
- W2945565341 hasRelatedWork W2960169247 @default.
- W2945565341 hasRelatedWork W3163478863 @default.
- W2945565341 hasRelatedWork W4288359756 @default.
- W2945565341 hasRelatedWork W4293079908 @default.
- W2945565341 hasVolume "359" @default.
- W2945565341 isParatext "false" @default.
- W2945565341 isRetracted "false" @default.
- W2945565341 magId "2945565341" @default.
- W2945565341 workType "article" @default.