Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945589655> ?p ?o ?g. }
- W2945589655 endingPage "7728" @default.
- W2945589655 startingPage "7719" @default.
- W2945589655 abstract "In this article, the use of an SPME technique is reported for the first time for direct measurement of free drug concentration in solid tissue. In our investigations, we considered doxorubicin (DOX) spiked in homogenized tissue matrix at transient and equilibrium extraction conditions, with subsequent assessment of obtained experimental results by an in silico approach using mathematical models developed in COMSOL Multyphysics. In silico studies were performed on the basis of transported diluted species (tds) and reaction engineering (re) modules from COMSOL Multiphysics, using the same conditions as those used to attain experimental results. To determine the apparent binding affinity of DOX to the tissue matrix which contains multiple binding species, the experimentally determined binding affinity of DOX with human serum albumin (HSA) was considered to simplify the mathematical calculations. Here, the value of the binding affinity was considered for a single binding site and adjusted by fitting the experimental results with the mathematical model. Bovine lung tissue homogenate was selected as a surrogate matrix, and a biocompatible C-8 commercial SPME fiber was used for extraction of DOX. In total, four mathematical models were herein developed to describe the mass transfer kinetics of solid coatings: in agar gel at static conditions, in PBS solution with agitated conditions, extraction in PBS solution in the presence of an HSA binding matrix, and static extraction in homogenized lung tissue. For all conditions, simulated results were in good agreement with experimental results. The developed mathematical model allows for measurements of free drug concentrations inside the tissue matrix and facilitates calculations of local depletion of DOX by a solid SPME coating. Results of the investigations indicate that local depletion of the free form of DOX, even at the kinetic stage, is negligible for tissue extraction, as the release of the heavily bound analyte (over 99% binding to tissue matrix) is very rapid, thus easily compensating for the loss of the drug to the SPME coating. This indicates that the dissociation rate constant of DOX from lung tissue components is very rapid; therefore, the mass transfer of drug to the fiber coating via free from is very efficient. Our results also indicate that thin coating SPME fibers provide a good way to measure drug distribution after dosing, as extractions via thin coating SPME fibers do not affect the free concentration of the drug, which is responsible for drug distribution in tissue." @default.
- W2945589655 created "2019-05-29" @default.
- W2945589655 creator A5011955111 @default.
- W2945589655 creator A5019199817 @default.
- W2945589655 creator A5045312004 @default.
- W2945589655 creator A5046977318 @default.
- W2945589655 creator A5089367344 @default.
- W2945589655 date "2019-05-15" @default.
- W2945589655 modified "2023-10-01" @default.
- W2945589655 title "Measurement of Free Drug Concentration from Biological Tissue by Solid-Phase Microextraction: In Silico and Experimental Study" @default.
- W2945589655 cites W1543790510 @default.
- W2945589655 cites W1968059729 @default.
- W2945589655 cites W1971966881 @default.
- W2945589655 cites W1974290383 @default.
- W2945589655 cites W1999326276 @default.
- W2945589655 cites W2009650252 @default.
- W2945589655 cites W2010290519 @default.
- W2945589655 cites W2027784896 @default.
- W2945589655 cites W2035405192 @default.
- W2945589655 cites W2035616372 @default.
- W2945589655 cites W2040880670 @default.
- W2945589655 cites W2041319800 @default.
- W2945589655 cites W2044532076 @default.
- W2945589655 cites W2046063970 @default.
- W2945589655 cites W2048439051 @default.
- W2945589655 cites W2057853325 @default.
- W2945589655 cites W2083496794 @default.
- W2945589655 cites W2088583230 @default.
- W2945589655 cites W2089512187 @default.
- W2945589655 cites W2102307463 @default.
- W2945589655 cites W2102897174 @default.
- W2945589655 cites W2118526906 @default.
- W2945589655 cites W2137231580 @default.
- W2945589655 cites W2139544932 @default.
- W2945589655 cites W2141904929 @default.
- W2945589655 cites W2163496136 @default.
- W2945589655 cites W2167895469 @default.
- W2945589655 cites W2289796594 @default.
- W2945589655 cites W2312885139 @default.
- W2945589655 cites W2412188376 @default.
- W2945589655 cites W2583770167 @default.
- W2945589655 cites W2595913228 @default.
- W2945589655 cites W2787593167 @default.
- W2945589655 cites W2792166638 @default.
- W2945589655 cites W2792545882 @default.
- W2945589655 cites W2889167529 @default.
- W2945589655 cites W3021740461 @default.
- W2945589655 cites W38215213 @default.
- W2945589655 cites W4238834782 @default.
- W2945589655 doi "https://doi.org/10.1021/acs.analchem.9b00983" @default.
- W2945589655 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31091073" @default.
- W2945589655 hasPublicationYear "2019" @default.
- W2945589655 type Work @default.
- W2945589655 sameAs 2945589655 @default.
- W2945589655 citedByCount "27" @default.
- W2945589655 countsByYear W29455896552019 @default.
- W2945589655 countsByYear W29455896552020 @default.
- W2945589655 countsByYear W29455896552021 @default.
- W2945589655 countsByYear W29455896552022 @default.
- W2945589655 countsByYear W29455896552023 @default.
- W2945589655 crossrefType "journal-article" @default.
- W2945589655 hasAuthorship W2945589655A5011955111 @default.
- W2945589655 hasAuthorship W2945589655A5019199817 @default.
- W2945589655 hasAuthorship W2945589655A5045312004 @default.
- W2945589655 hasAuthorship W2945589655A5046977318 @default.
- W2945589655 hasAuthorship W2945589655A5089367344 @default.
- W2945589655 hasBestOaLocation W29455896552 @default.
- W2945589655 hasConcept C104317684 @default.
- W2945589655 hasConcept C106487976 @default.
- W2945589655 hasConcept C121332964 @default.
- W2945589655 hasConcept C135628077 @default.
- W2945589655 hasConcept C162356407 @default.
- W2945589655 hasConcept C185592680 @default.
- W2945589655 hasConcept C205345274 @default.
- W2945589655 hasConcept C2775905019 @default.
- W2945589655 hasConcept C2778533135 @default.
- W2945589655 hasConcept C43617362 @default.
- W2945589655 hasConcept C46435376 @default.
- W2945589655 hasConcept C4725764 @default.
- W2945589655 hasConcept C55493867 @default.
- W2945589655 hasConcept C86807702 @default.
- W2945589655 hasConcept C97355855 @default.
- W2945589655 hasConceptScore W2945589655C104317684 @default.
- W2945589655 hasConceptScore W2945589655C106487976 @default.
- W2945589655 hasConceptScore W2945589655C121332964 @default.
- W2945589655 hasConceptScore W2945589655C135628077 @default.
- W2945589655 hasConceptScore W2945589655C162356407 @default.
- W2945589655 hasConceptScore W2945589655C185592680 @default.
- W2945589655 hasConceptScore W2945589655C205345274 @default.
- W2945589655 hasConceptScore W2945589655C2775905019 @default.
- W2945589655 hasConceptScore W2945589655C2778533135 @default.
- W2945589655 hasConceptScore W2945589655C43617362 @default.
- W2945589655 hasConceptScore W2945589655C46435376 @default.
- W2945589655 hasConceptScore W2945589655C4725764 @default.
- W2945589655 hasConceptScore W2945589655C55493867 @default.
- W2945589655 hasConceptScore W2945589655C86807702 @default.
- W2945589655 hasConceptScore W2945589655C97355855 @default.
- W2945589655 hasFunder F4320312526 @default.