Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945595320> ?p ?o ?g. }
- W2945595320 endingPage "634" @default.
- W2945595320 startingPage "619" @default.
- W2945595320 abstract "This paper deals with the detection and identification of changepoints among covariances of high-dimensional longitudinal data, where the number of features is greater than both the sample size and the number of repeated measurements. The proposed methods are applicable under general temporal-spatial dependence. A new test statistic is introduced for changepoint detection, and its asymptotic distribution is established. If a changepoint is detected, an estimate of the location is provided. The rate of convergence of the estimator is shown to depend on the data dimension, sample size, and signal-to-noise ratio. Binary segmentation is used to estimate the locations of possibly multiple changepoints, and the corresponding estimator is shown to be consistent under mild conditions. Simulation studies provide the empirical size and power of the proposed test and the accuracy of the changepoint estimator. An application to a time-course microarray dataset identifies gene sets with significant gene interaction changes over time." @default.
- W2945595320 created "2019-05-29" @default.
- W2945595320 creator A5002771011 @default.
- W2945595320 creator A5051804082 @default.
- W2945595320 creator A5059723521 @default.
- W2945595320 date "2019-05-24" @default.
- W2945595320 modified "2023-09-25" @default.
- W2945595320 title "Homogeneity tests of covariance matrices with high-dimensional longitudinal data" @default.
- W2945595320 cites W139767586 @default.
- W2945595320 cites W1753821802 @default.
- W2945595320 cites W1968224663 @default.
- W2945595320 cites W1990137378 @default.
- W2945595320 cites W1996196481 @default.
- W2945595320 cites W2000050023 @default.
- W2945595320 cites W2000730994 @default.
- W2945595320 cites W2009660843 @default.
- W2945595320 cites W2030376515 @default.
- W2945595320 cites W2041062137 @default.
- W2945595320 cites W2057797785 @default.
- W2945595320 cites W2063717803 @default.
- W2945595320 cites W2065367645 @default.
- W2945595320 cites W2081874429 @default.
- W2945595320 cites W2087502871 @default.
- W2945595320 cites W2091825839 @default.
- W2945595320 cites W2103017472 @default.
- W2945595320 cites W2123735241 @default.
- W2945595320 cites W2127170893 @default.
- W2945595320 cites W2149566602 @default.
- W2945595320 cites W2266303842 @default.
- W2945595320 cites W2347058779 @default.
- W2945595320 cites W2516718464 @default.
- W2945595320 cites W3098547022 @default.
- W2945595320 cites W3104024536 @default.
- W2945595320 cites W4298248278 @default.
- W2945595320 cites W4362230038 @default.
- W2945595320 doi "https://doi.org/10.1093/biomet/asz011" @default.
- W2945595320 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6690172" @default.
- W2945595320 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31427823" @default.
- W2945595320 hasPublicationYear "2019" @default.
- W2945595320 type Work @default.
- W2945595320 sameAs 2945595320 @default.
- W2945595320 citedByCount "14" @default.
- W2945595320 countsByYear W29455953202020 @default.
- W2945595320 countsByYear W29455953202021 @default.
- W2945595320 countsByYear W29455953202022 @default.
- W2945595320 countsByYear W29455953202023 @default.
- W2945595320 crossrefType "journal-article" @default.
- W2945595320 hasAuthorship W2945595320A5002771011 @default.
- W2945595320 hasAuthorship W2945595320A5051804082 @default.
- W2945595320 hasAuthorship W2945595320A5059723521 @default.
- W2945595320 hasBestOaLocation W29455953202 @default.
- W2945595320 hasConcept C104317684 @default.
- W2945595320 hasConcept C105795698 @default.
- W2945595320 hasConcept C127162648 @default.
- W2945595320 hasConcept C129848803 @default.
- W2945595320 hasConcept C142259097 @default.
- W2945595320 hasConcept C169857963 @default.
- W2945595320 hasConcept C178650346 @default.
- W2945595320 hasConcept C185142706 @default.
- W2945595320 hasConcept C185429906 @default.
- W2945595320 hasConcept C185592680 @default.
- W2945595320 hasConcept C193244246 @default.
- W2945595320 hasConcept C31258907 @default.
- W2945595320 hasConcept C33923547 @default.
- W2945595320 hasConcept C41008148 @default.
- W2945595320 hasConcept C5297727 @default.
- W2945595320 hasConcept C55493867 @default.
- W2945595320 hasConcept C57869625 @default.
- W2945595320 hasConcept C87007009 @default.
- W2945595320 hasConcept C89128539 @default.
- W2945595320 hasConceptScore W2945595320C104317684 @default.
- W2945595320 hasConceptScore W2945595320C105795698 @default.
- W2945595320 hasConceptScore W2945595320C127162648 @default.
- W2945595320 hasConceptScore W2945595320C129848803 @default.
- W2945595320 hasConceptScore W2945595320C142259097 @default.
- W2945595320 hasConceptScore W2945595320C169857963 @default.
- W2945595320 hasConceptScore W2945595320C178650346 @default.
- W2945595320 hasConceptScore W2945595320C185142706 @default.
- W2945595320 hasConceptScore W2945595320C185429906 @default.
- W2945595320 hasConceptScore W2945595320C185592680 @default.
- W2945595320 hasConceptScore W2945595320C193244246 @default.
- W2945595320 hasConceptScore W2945595320C31258907 @default.
- W2945595320 hasConceptScore W2945595320C33923547 @default.
- W2945595320 hasConceptScore W2945595320C41008148 @default.
- W2945595320 hasConceptScore W2945595320C5297727 @default.
- W2945595320 hasConceptScore W2945595320C55493867 @default.
- W2945595320 hasConceptScore W2945595320C57869625 @default.
- W2945595320 hasConceptScore W2945595320C87007009 @default.
- W2945595320 hasConceptScore W2945595320C89128539 @default.
- W2945595320 hasFunder F4320321001 @default.
- W2945595320 hasFunder F4320332161 @default.
- W2945595320 hasFunder F4320335353 @default.
- W2945595320 hasFunder F4320337347 @default.
- W2945595320 hasIssue "3" @default.
- W2945595320 hasLocation W29455953201 @default.
- W2945595320 hasLocation W29455953202 @default.
- W2945595320 hasLocation W29455953203 @default.
- W2945595320 hasOpenAccess W2945595320 @default.