Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945596954> ?p ?o ?g. }
- W2945596954 abstract "Abstract Background Dengue, chikungunya, and Zika are arboviruses of major global health concern. Decisions regarding the clinical management of suspected arboviral infection are challenging in resource-limited settings, particularly when deciding on patient hospitalization. The objective of this study was to determine if hospitalization of individuals with suspected arboviral infections could be predicted using subject intake data. Methodology/Principal Findings Two prediction models were developed using data from a surveillance study in Machala, a city in southern coastal Ecuador with a high burden of arboviral infections. Data was obtained from subjects who presented at sentinel medical centers with suspected arboviral infection (November 2013 to September 2017). The first prediction model—called the Severity Index for Suspected Arbovirus (SISA)— used only demographic and symptom data. The second prediction model—called the Severity Index for Suspected Arbovirus with Laboratory (SISAL)—incorporated laboratory data. These models were selected by comparing the prediction ability of seven machine learning algorithms; the area under the receiver operating characteristic curve from the prediction of a test dataset was used to select the final algorithm for each model. After eliminating those with missing data, the SISA dataset had 534 subjects, and the SISAL dataset had 98 subjects. For SISA, the best prediction algorithm was the generalized boosting model, with an AUC of 0.91. For SISAL, the best prediction algorithm was the elastic net with an AUC of 0.94. A sensitivity analysis revealed that SISA and SISAL are not directly comparable to one another. Conclusions/Significance Both SISA and SISAL were able to predict arbovirus hospitalization with a high degree of accuracy in our dataset. These algorithms will need to be tested and validated on new data from future patients. Machine learning is a powerful prediction tool and provides an excellent option for new management tools and clinical assessment of arboviral infection. Author Summary Patient triage is a critical decision for clinicians; patients with suspected arbovirus infection are difficult to diagnose as symptoms can be vague and molecular testing can be expensive or unavailable. Determining whether these patients should be hospitalized or not can be challenging, especially in resource-limited settings. Our study included data from 543 subjects with a diagnosis of suspected dengue, chikungunya, or Zika infection. Using a machine learning approach, we tested the ability of seven algorithms to predict hospitalization status based on the signs, symptoms, and laboratory data that would be available to a clinician at patient intake. Using only signs and symptoms, we were able to predict hospitalization with high accuracy (94%). Including laboratory data also resulted in highly accurate prediction of hospitalization (92%). This tool should be test in future studies with new subject data. Upon further development, we envision a simple mobile application to aid in the decision-making process for clinicians in areas with limited resources." @default.
- W2945596954 created "2019-05-29" @default.
- W2945596954 creator A5001287133 @default.
- W2945596954 creator A5003927165 @default.
- W2945596954 creator A5019006708 @default.
- W2945596954 creator A5021912905 @default.
- W2945596954 creator A5029334036 @default.
- W2945596954 creator A5035313498 @default.
- W2945596954 creator A5041727836 @default.
- W2945596954 creator A5043555250 @default.
- W2945596954 creator A5046922948 @default.
- W2945596954 creator A5051867403 @default.
- W2945596954 creator A5059560578 @default.
- W2945596954 creator A5076053674 @default.
- W2945596954 creator A5083908119 @default.
- W2945596954 creator A5085041309 @default.
- W2945596954 date "2019-05-24" @default.
- W2945596954 modified "2023-09-23" @default.
- W2945596954 title "Severity Index for Suspected Arbovirus (SISA): machine learning for accurate prediction of hospitalization in subjects suspected of arboviral infection" @default.
- W2945596954 cites W1513618424 @default.
- W2945596954 cites W1538449476 @default.
- W2945596954 cites W1558143285 @default.
- W2945596954 cites W1831050183 @default.
- W2945596954 cites W1879687955 @default.
- W2945596954 cites W1969557290 @default.
- W2945596954 cites W1991733827 @default.
- W2945596954 cites W2004288989 @default.
- W2945596954 cites W2005227842 @default.
- W2945596954 cites W2006617902 @default.
- W2945596954 cites W2017034971 @default.
- W2945596954 cites W2048349698 @default.
- W2945596954 cites W2084341220 @default.
- W2945596954 cites W2091580218 @default.
- W2945596954 cites W2093274439 @default.
- W2945596954 cites W2109949934 @default.
- W2945596954 cites W2116802246 @default.
- W2945596954 cites W2119160928 @default.
- W2945596954 cites W2119910794 @default.
- W2945596954 cites W2121395472 @default.
- W2945596954 cites W2122825543 @default.
- W2945596954 cites W2140308441 @default.
- W2945596954 cites W2143457654 @default.
- W2945596954 cites W2144628854 @default.
- W2945596954 cites W2157963336 @default.
- W2945596954 cites W2164462424 @default.
- W2945596954 cites W2177870565 @default.
- W2945596954 cites W2260392875 @default.
- W2945596954 cites W2282181907 @default.
- W2945596954 cites W2338936985 @default.
- W2945596954 cites W2399847652 @default.
- W2945596954 cites W2546889486 @default.
- W2945596954 cites W2738975713 @default.
- W2945596954 cites W2769168426 @default.
- W2945596954 cites W2790454175 @default.
- W2945596954 cites W2791831881 @default.
- W2945596954 cites W2796670591 @default.
- W2945596954 cites W2808070226 @default.
- W2945596954 cites W2808376171 @default.
- W2945596954 cites W2888283379 @default.
- W2945596954 cites W2909717689 @default.
- W2945596954 cites W2909953525 @default.
- W2945596954 cites W2913997948 @default.
- W2945596954 cites W2914590008 @default.
- W2945596954 cites W2923666109 @default.
- W2945596954 cites W2929110666 @default.
- W2945596954 doi "https://doi.org/10.1101/647206" @default.
- W2945596954 hasPublicationYear "2019" @default.
- W2945596954 type Work @default.
- W2945596954 sameAs 2945596954 @default.
- W2945596954 citedByCount "0" @default.
- W2945596954 crossrefType "posted-content" @default.
- W2945596954 hasAuthorship W2945596954A5001287133 @default.
- W2945596954 hasAuthorship W2945596954A5003927165 @default.
- W2945596954 hasAuthorship W2945596954A5019006708 @default.
- W2945596954 hasAuthorship W2945596954A5021912905 @default.
- W2945596954 hasAuthorship W2945596954A5029334036 @default.
- W2945596954 hasAuthorship W2945596954A5035313498 @default.
- W2945596954 hasAuthorship W2945596954A5041727836 @default.
- W2945596954 hasAuthorship W2945596954A5043555250 @default.
- W2945596954 hasAuthorship W2945596954A5046922948 @default.
- W2945596954 hasAuthorship W2945596954A5051867403 @default.
- W2945596954 hasAuthorship W2945596954A5059560578 @default.
- W2945596954 hasAuthorship W2945596954A5076053674 @default.
- W2945596954 hasAuthorship W2945596954A5083908119 @default.
- W2945596954 hasAuthorship W2945596954A5085041309 @default.
- W2945596954 hasBestOaLocation W29455969541 @default.
- W2945596954 hasConcept C119857082 @default.
- W2945596954 hasConcept C126322002 @default.
- W2945596954 hasConcept C142724271 @default.
- W2945596954 hasConcept C154945302 @default.
- W2945596954 hasConcept C159047783 @default.
- W2945596954 hasConcept C2522874641 @default.
- W2945596954 hasConcept C2778116200 @default.
- W2945596954 hasConcept C2781273456 @default.
- W2945596954 hasConcept C41008148 @default.
- W2945596954 hasConcept C45804977 @default.
- W2945596954 hasConcept C533803919 @default.
- W2945596954 hasConcept C58471807 @default.
- W2945596954 hasConcept C71924100 @default.
- W2945596954 hasConceptScore W2945596954C119857082 @default.