Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945688601> ?p ?o ?g. }
- W2945688601 endingPage "2064" @default.
- W2945688601 startingPage "2064" @default.
- W2945688601 abstract "By applying the Wavelet Relevance Vector Machine (WRVM) method, this research proposes the loose zone of roadway surrounding rock prediction. Based on the theory of relevance vector machine (RVM), the wavelet function is introduced to replace the original Gauss function as the model kernel function to form the WRVM. Five factors affecting the loose zone of roadway surrounding rock are selected as the model input, and the prediction model of the loose zone of roadway surrounding rock based on WRVM is established. By using cross-validation method, the kernel parameters of three kinds of wavelet relevance vector machines (RVMs) are calculated. By comparing and analyzing the root mean square (RMS) error of the test results of each predictive model, the advantages and accuracy of the model are verified. In practical engineering applications, the average relative prediction errors of the Mexican relevance vector machine, the Morlet relevance vector machine and the difference of Gaussian (DOG) relevance vector machine models are accordingly 4.581%, 4.586% and 4.575%. The square correlation coefficient of the predicted samples is 0.95 > 0.9, which further verifies the accuracy and reliability of the proposed method." @default.
- W2945688601 created "2019-05-29" @default.
- W2945688601 creator A5002416341 @default.
- W2945688601 creator A5021159803 @default.
- W2945688601 creator A5023624710 @default.
- W2945688601 creator A5086859444 @default.
- W2945688601 creator A5087913698 @default.
- W2945688601 date "2019-05-19" @default.
- W2945688601 modified "2023-10-17" @default.
- W2945688601 title "Predicting the Loose Zone of Roadway Surrounding Rock Using Wavelet Relevance Vector Machine" @default.
- W2945688601 cites W1566372502 @default.
- W2945688601 cites W1635042630 @default.
- W2945688601 cites W1793994350 @default.
- W2945688601 cites W1971240167 @default.
- W2945688601 cites W1986939972 @default.
- W2945688601 cites W1986994650 @default.
- W2945688601 cites W1993087640 @default.
- W2945688601 cites W1993361585 @default.
- W2945688601 cites W1993371520 @default.
- W2945688601 cites W1997493987 @default.
- W2945688601 cites W2004017165 @default.
- W2945688601 cites W2004127333 @default.
- W2945688601 cites W2011135860 @default.
- W2945688601 cites W2024368405 @default.
- W2945688601 cites W2025363331 @default.
- W2945688601 cites W2025514017 @default.
- W2945688601 cites W2042031583 @default.
- W2945688601 cites W2043672027 @default.
- W2945688601 cites W2044772846 @default.
- W2945688601 cites W2062920966 @default.
- W2945688601 cites W2069691109 @default.
- W2945688601 cites W2076514882 @default.
- W2945688601 cites W2080977940 @default.
- W2945688601 cites W2138228656 @default.
- W2945688601 cites W2138696317 @default.
- W2945688601 cites W2163183933 @default.
- W2945688601 cites W2182781714 @default.
- W2945688601 cites W2190226824 @default.
- W2945688601 cites W2395377805 @default.
- W2945688601 cites W2461471659 @default.
- W2945688601 cites W2555066392 @default.
- W2945688601 cites W2582720565 @default.
- W2945688601 cites W2582883409 @default.
- W2945688601 cites W2588142873 @default.
- W2945688601 cites W2589383136 @default.
- W2945688601 cites W2591420977 @default.
- W2945688601 cites W2599905188 @default.
- W2945688601 cites W2605071649 @default.
- W2945688601 cites W2609004300 @default.
- W2945688601 cites W2733771299 @default.
- W2945688601 cites W2742412886 @default.
- W2945688601 cites W2767071145 @default.
- W2945688601 cites W2767825772 @default.
- W2945688601 cites W2770536576 @default.
- W2945688601 cites W2781541244 @default.
- W2945688601 cites W2784073554 @default.
- W2945688601 cites W2786589907 @default.
- W2945688601 cites W2790438135 @default.
- W2945688601 cites W2805803027 @default.
- W2945688601 cites W2898995069 @default.
- W2945688601 cites W2900249394 @default.
- W2945688601 cites W2903117849 @default.
- W2945688601 cites W2905645259 @default.
- W2945688601 cites W2908291726 @default.
- W2945688601 cites W2911065778 @default.
- W2945688601 cites W2916366368 @default.
- W2945688601 doi "https://doi.org/10.3390/app9102064" @default.
- W2945688601 hasPublicationYear "2019" @default.
- W2945688601 type Work @default.
- W2945688601 sameAs 2945688601 @default.
- W2945688601 citedByCount "14" @default.
- W2945688601 countsByYear W29456886012019 @default.
- W2945688601 countsByYear W29456886012020 @default.
- W2945688601 countsByYear W29456886012022 @default.
- W2945688601 countsByYear W29456886012023 @default.
- W2945688601 crossrefType "journal-article" @default.
- W2945688601 hasAuthorship W2945688601A5002416341 @default.
- W2945688601 hasAuthorship W2945688601A5021159803 @default.
- W2945688601 hasAuthorship W2945688601A5023624710 @default.
- W2945688601 hasAuthorship W2945688601A5086859444 @default.
- W2945688601 hasAuthorship W2945688601A5087913698 @default.
- W2945688601 hasBestOaLocation W29456886011 @default.
- W2945688601 hasConcept C11413529 @default.
- W2945688601 hasConcept C121332964 @default.
- W2945688601 hasConcept C12267149 @default.
- W2945688601 hasConcept C124101348 @default.
- W2945688601 hasConcept C127313418 @default.
- W2945688601 hasConcept C14948415 @default.
- W2945688601 hasConcept C153180895 @default.
- W2945688601 hasConcept C154945302 @default.
- W2945688601 hasConcept C158154518 @default.
- W2945688601 hasConcept C161794534 @default.
- W2945688601 hasConcept C163716315 @default.
- W2945688601 hasConcept C17744445 @default.
- W2945688601 hasConcept C196216189 @default.
- W2945688601 hasConcept C199539241 @default.
- W2945688601 hasConcept C2778280487 @default.
- W2945688601 hasConcept C33923547 @default.