Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945697643> ?p ?o ?g. }
- W2945697643 abstract "We propose NovoGrad, an adaptive stochastic gradient descent method with layer-wise gradient normalization and decoupled weight decay. In our experiments on neural networks for image classification, speech recognition, machine translation, and language modeling, it performs on par or better than well tuned SGD with momentum and Adam or AdamW. Additionally, NovoGrad (1) is robust to the choice of learning rate and weight initialization, (2) works well in a large batch setting, and (3) has two times smaller memory footprint than Adam." @default.
- W2945697643 created "2019-05-29" @default.
- W2945697643 creator A5013846372 @default.
- W2945697643 creator A5024453480 @default.
- W2945697643 creator A5026088310 @default.
- W2945697643 creator A5032957280 @default.
- W2945697643 creator A5048403564 @default.
- W2945697643 creator A5079416691 @default.
- W2945697643 creator A5080235829 @default.
- W2945697643 creator A5088392468 @default.
- W2945697643 creator A5090541149 @default.
- W2945697643 date "2019-05-27" @default.
- W2945697643 modified "2023-09-27" @default.
- W2945697643 title "Stochastic Gradient Methods with Layer-wise Adaptive Moments for Training of Deep Networks" @default.
- W2945697643 cites W104184427 @default.
- W2945697643 cites W1494198834 @default.
- W2945697643 cites W1988720110 @default.
- W2945697643 cites W2117539524 @default.
- W2945697643 cites W2125930537 @default.
- W2945697643 cites W2146502635 @default.
- W2945697643 cites W2183341477 @default.
- W2945697643 cites W2302255633 @default.
- W2945697643 cites W2525332836 @default.
- W2945697643 cites W2619516334 @default.
- W2945697643 cites W2622263826 @default.
- W2945697643 cites W2626778328 @default.
- W2945697643 cites W2737818580 @default.
- W2945697643 cites W2755543420 @default.
- W2945697643 cites W2755682530 @default.
- W2945697643 cites W2757910899 @default.
- W2945697643 cites W2759465730 @default.
- W2945697643 cites W2770102447 @default.
- W2945697643 cites W2776855315 @default.
- W2945697643 cites W2785523195 @default.
- W2945697643 cites W2785921341 @default.
- W2945697643 cites W2797328513 @default.
- W2945697643 cites W2806311723 @default.
- W2945697643 cites W2884711234 @default.
- W2945697643 cites W2901739041 @default.
- W2945697643 cites W2902255543 @default.
- W2945697643 cites W2902332991 @default.
- W2945697643 cites W2907225497 @default.
- W2945697643 cites W2908510526 @default.
- W2945697643 cites W2911109671 @default.
- W2945697643 cites W2962784628 @default.
- W2945697643 cites W2963112338 @default.
- W2945697643 cites W2963263347 @default.
- W2945697643 cites W2963986115 @default.
- W2945697643 cites W2964121744 @default.
- W2945697643 cites W2964160102 @default.
- W2945697643 cites W2973215447 @default.
- W2945697643 cites W3000779003 @default.
- W2945697643 cites W836608889 @default.
- W2945697643 hasPublicationYear "2019" @default.
- W2945697643 type Work @default.
- W2945697643 sameAs 2945697643 @default.
- W2945697643 citedByCount "38" @default.
- W2945697643 countsByYear W29456976432019 @default.
- W2945697643 countsByYear W29456976432020 @default.
- W2945697643 countsByYear W29456976432021 @default.
- W2945697643 crossrefType "posted-content" @default.
- W2945697643 hasAuthorship W2945697643A5013846372 @default.
- W2945697643 hasAuthorship W2945697643A5024453480 @default.
- W2945697643 hasAuthorship W2945697643A5026088310 @default.
- W2945697643 hasAuthorship W2945697643A5032957280 @default.
- W2945697643 hasAuthorship W2945697643A5048403564 @default.
- W2945697643 hasAuthorship W2945697643A5079416691 @default.
- W2945697643 hasAuthorship W2945697643A5080235829 @default.
- W2945697643 hasAuthorship W2945697643A5088392468 @default.
- W2945697643 hasAuthorship W2945697643A5090541149 @default.
- W2945697643 hasConcept C111919701 @default.
- W2945697643 hasConcept C11413529 @default.
- W2945697643 hasConcept C114466953 @default.
- W2945697643 hasConcept C115680565 @default.
- W2945697643 hasConcept C121332964 @default.
- W2945697643 hasConcept C136886441 @default.
- W2945697643 hasConcept C144024400 @default.
- W2945697643 hasConcept C153258448 @default.
- W2945697643 hasConcept C153294291 @default.
- W2945697643 hasConcept C154945302 @default.
- W2945697643 hasConcept C169258074 @default.
- W2945697643 hasConcept C178790620 @default.
- W2945697643 hasConcept C185592680 @default.
- W2945697643 hasConcept C19165224 @default.
- W2945697643 hasConcept C199360897 @default.
- W2945697643 hasConcept C203005215 @default.
- W2945697643 hasConcept C206688291 @default.
- W2945697643 hasConcept C2777211547 @default.
- W2945697643 hasConcept C2779227376 @default.
- W2945697643 hasConcept C2984842247 @default.
- W2945697643 hasConcept C41008148 @default.
- W2945697643 hasConcept C50644808 @default.
- W2945697643 hasConcept C70153297 @default.
- W2945697643 hasConcept C74912251 @default.
- W2945697643 hasConceptScore W2945697643C111919701 @default.
- W2945697643 hasConceptScore W2945697643C11413529 @default.
- W2945697643 hasConceptScore W2945697643C114466953 @default.
- W2945697643 hasConceptScore W2945697643C115680565 @default.
- W2945697643 hasConceptScore W2945697643C121332964 @default.
- W2945697643 hasConceptScore W2945697643C136886441 @default.