Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945759189> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2945759189 endingPage "712" @default.
- W2945759189 startingPage "702" @default.
- W2945759189 abstract "Abstract Automatic lung disease detection is a critical challenging task for researchers because of the noise signals getting included into creative signals amid the image capturing process which may corrupt the cancer image quality thusly bringing about the debased performance. So as to evade this, Lung cancer preprocessing has turned into an imperative stage with the key parts as edge detection, lung image resampling, lung image upgrade and image denoising for improving the nature of input image. Image Denoising is a critical pre-processing task preceding further preparing of the image like feature extraction, segmentation, surface examination, and so forth which elminates the noise whereas retaining the edges and additional complete features to the extent possible. This paper deals with improvement of the quality of lung image and diagnosis of lung cancer by reducing misclassification. The lung CT images are collected from Cancer imaging Archive (CIA) dataset, noise present in the images are eliminated by applying weighted mean histogram equalization approach which successfully removes noise from image, also enhancing the quality of the image, using improved profuse clustering technique (IPCT) for segmenting the affected region. Various spectral features are derived from the affected region. These are examined by applying deep learning instantaneously trained neural network for predicting lung cancer. Eventually, the system is examined by the efficiency of the system using MATLAB based simulation results. The system ensures that 98.42% of accuracy with minimum classification error 0.038." @default.
- W2945759189 created "2019-05-29" @default.
- W2945759189 creator A5033352861 @default.
- W2945759189 creator A5055362277 @default.
- W2945759189 creator A5084217047 @default.
- W2945759189 date "2019-10-01" @default.
- W2945759189 modified "2023-10-11" @default.
- W2945759189 title "Lung cancer detection from CT image using improved profuse clustering and deep learning instantaneously trained neural networks" @default.
- W2945759189 cites W2003258143 @default.
- W2945759189 cites W2005226447 @default.
- W2945759189 cites W2022192059 @default.
- W2945759189 cites W2035107885 @default.
- W2945759189 cites W2064390925 @default.
- W2945759189 cites W2083927153 @default.
- W2945759189 cites W2103752162 @default.
- W2945759189 cites W2120903075 @default.
- W2945759189 cites W2133247542 @default.
- W2945759189 cites W2147853263 @default.
- W2945759189 cites W2148849888 @default.
- W2945759189 cites W2193340000 @default.
- W2945759189 cites W2208036992 @default.
- W2945759189 cites W2212041110 @default.
- W2945759189 cites W2346809795 @default.
- W2945759189 cites W2562547016 @default.
- W2945759189 cites W2743008510 @default.
- W2945759189 cites W2777197634 @default.
- W2945759189 cites W2820351963 @default.
- W2945759189 cites W2892973045 @default.
- W2945759189 cites W2899028020 @default.
- W2945759189 cites W2899393783 @default.
- W2945759189 cites W2916099831 @default.
- W2945759189 doi "https://doi.org/10.1016/j.measurement.2019.05.027" @default.
- W2945759189 hasPublicationYear "2019" @default.
- W2945759189 type Work @default.
- W2945759189 sameAs 2945759189 @default.
- W2945759189 citedByCount "135" @default.
- W2945759189 countsByYear W29457591892019 @default.
- W2945759189 countsByYear W29457591892020 @default.
- W2945759189 countsByYear W29457591892021 @default.
- W2945759189 countsByYear W29457591892022 @default.
- W2945759189 countsByYear W29457591892023 @default.
- W2945759189 crossrefType "journal-article" @default.
- W2945759189 hasAuthorship W2945759189A5033352861 @default.
- W2945759189 hasAuthorship W2945759189A5055362277 @default.
- W2945759189 hasAuthorship W2945759189A5084217047 @default.
- W2945759189 hasConcept C108583219 @default.
- W2945759189 hasConcept C126838900 @default.
- W2945759189 hasConcept C142724271 @default.
- W2945759189 hasConcept C153180895 @default.
- W2945759189 hasConcept C154945302 @default.
- W2945759189 hasConcept C2776256026 @default.
- W2945759189 hasConcept C31972630 @default.
- W2945759189 hasConcept C41008148 @default.
- W2945759189 hasConcept C50644808 @default.
- W2945759189 hasConcept C544519230 @default.
- W2945759189 hasConcept C71924100 @default.
- W2945759189 hasConcept C73555534 @default.
- W2945759189 hasConceptScore W2945759189C108583219 @default.
- W2945759189 hasConceptScore W2945759189C126838900 @default.
- W2945759189 hasConceptScore W2945759189C142724271 @default.
- W2945759189 hasConceptScore W2945759189C153180895 @default.
- W2945759189 hasConceptScore W2945759189C154945302 @default.
- W2945759189 hasConceptScore W2945759189C2776256026 @default.
- W2945759189 hasConceptScore W2945759189C31972630 @default.
- W2945759189 hasConceptScore W2945759189C41008148 @default.
- W2945759189 hasConceptScore W2945759189C50644808 @default.
- W2945759189 hasConceptScore W2945759189C544519230 @default.
- W2945759189 hasConceptScore W2945759189C71924100 @default.
- W2945759189 hasConceptScore W2945759189C73555534 @default.
- W2945759189 hasLocation W29457591891 @default.
- W2945759189 hasOpenAccess W2945759189 @default.
- W2945759189 hasPrimaryLocation W29457591891 @default.
- W2945759189 hasRelatedWork W2503569529 @default.
- W2945759189 hasRelatedWork W2738221750 @default.
- W2945759189 hasRelatedWork W2773120646 @default.
- W2945759189 hasRelatedWork W2790522458 @default.
- W2945759189 hasRelatedWork W3156786002 @default.
- W2945759189 hasRelatedWork W3208028783 @default.
- W2945759189 hasRelatedWork W4211209597 @default.
- W2945759189 hasRelatedWork W4245792239 @default.
- W2945759189 hasRelatedWork W564581980 @default.
- W2945759189 hasRelatedWork W3108696707 @default.
- W2945759189 hasVolume "145" @default.
- W2945759189 isParatext "false" @default.
- W2945759189 isRetracted "false" @default.
- W2945759189 magId "2945759189" @default.
- W2945759189 workType "article" @default.