Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945781641> ?p ?o ?g. }
- W2945781641 endingPage "10193" @default.
- W2945781641 startingPage "10182" @default.
- W2945781641 abstract "The epithelial sodium channel (ENaC) mediates Na+ transport in several epithelia, including the aldosterone-sensitive distal nephron, distal colon, and biliary epithelium. Numerous factors regulate ENaC activity, including extracellular ligands, post-translational modifications, and membrane-resident lipids. However, ENaC regulation by bile acids and conjugated bilirubin, metabolites that are abundant in the biliary tree and intestinal tract and are sometimes elevated in the urine of individuals with advanced liver disease, remains poorly understood. Here, using a Xenopus oocyte-based system to express and functionally study ENaC, we found that, depending on the bile acid used, bile acids both activate and inhibit mouse ENaC. Whether bile acids were activating or inhibiting was contingent on the position and orientation of specific bile acid moieties. For example, a hydroxyl group at the 12-position and facing the hydrophilic side (12α-OH) was activating. Taurine-conjugated bile acids, which have reduced membrane permeability, affected ENaC activity more strongly than did their more membrane-permeant unconjugated counterparts, suggesting that bile acids regulate ENaC extracellularly. Bile acid–dependent activation was enhanced by amino acid substitutions in ENaC that depress open probability and was precluded by proteolytic cleavage that increases open probability, consistent with an effect of bile acids on ENaC open probability. Bile acids also regulated ENaC in a cortical collecting duct cell line, mirroring the results in Xenopus oocytes. We also show that bilirubin conjugates activate ENaC. These results indicate that ENaC responds to compounds abundant in bile and that their ability to regulate this channel depends on the presence of specific functional groups. The epithelial sodium channel (ENaC) mediates Na+ transport in several epithelia, including the aldosterone-sensitive distal nephron, distal colon, and biliary epithelium. Numerous factors regulate ENaC activity, including extracellular ligands, post-translational modifications, and membrane-resident lipids. However, ENaC regulation by bile acids and conjugated bilirubin, metabolites that are abundant in the biliary tree and intestinal tract and are sometimes elevated in the urine of individuals with advanced liver disease, remains poorly understood. Here, using a Xenopus oocyte-based system to express and functionally study ENaC, we found that, depending on the bile acid used, bile acids both activate and inhibit mouse ENaC. Whether bile acids were activating or inhibiting was contingent on the position and orientation of specific bile acid moieties. For example, a hydroxyl group at the 12-position and facing the hydrophilic side (12α-OH) was activating. Taurine-conjugated bile acids, which have reduced membrane permeability, affected ENaC activity more strongly than did their more membrane-permeant unconjugated counterparts, suggesting that bile acids regulate ENaC extracellularly. Bile acid–dependent activation was enhanced by amino acid substitutions in ENaC that depress open probability and was precluded by proteolytic cleavage that increases open probability, consistent with an effect of bile acids on ENaC open probability. Bile acids also regulated ENaC in a cortical collecting duct cell line, mirroring the results in Xenopus oocytes. We also show that bilirubin conjugates activate ENaC. These results indicate that ENaC responds to compounds abundant in bile and that their ability to regulate this channel depends on the presence of specific functional groups." @default.
- W2945781641 created "2019-05-29" @default.
- W2945781641 creator A5016535669 @default.
- W2945781641 creator A5025349775 @default.
- W2945781641 creator A5037728605 @default.
- W2945781641 creator A5053328495 @default.
- W2945781641 creator A5069062256 @default.
- W2945781641 creator A5087475311 @default.
- W2945781641 creator A5088834950 @default.
- W2945781641 date "2019-06-01" @default.
- W2945781641 modified "2023-10-16" @default.
- W2945781641 title "Murine epithelial sodium (Na+) channel regulation by biliary factors" @default.
- W2945781641 cites W1505008375 @default.
- W2945781641 cites W1521838500 @default.
- W2945781641 cites W1535004829 @default.
- W2945781641 cites W1554826176 @default.
- W2945781641 cites W1875161787 @default.
- W2945781641 cites W1963587340 @default.
- W2945781641 cites W1967031248 @default.
- W2945781641 cites W1969898475 @default.
- W2945781641 cites W1972543530 @default.
- W2945781641 cites W1975983905 @default.
- W2945781641 cites W1990084655 @default.
- W2945781641 cites W1990836642 @default.
- W2945781641 cites W1999274244 @default.
- W2945781641 cites W2006513869 @default.
- W2945781641 cites W2007210225 @default.
- W2945781641 cites W2008851780 @default.
- W2945781641 cites W2018978933 @default.
- W2945781641 cites W2034728504 @default.
- W2945781641 cites W2039380144 @default.
- W2945781641 cites W2043134189 @default.
- W2945781641 cites W2053581007 @default.
- W2945781641 cites W2057224175 @default.
- W2945781641 cites W2058058212 @default.
- W2945781641 cites W2058508784 @default.
- W2945781641 cites W2070196411 @default.
- W2945781641 cites W2071551353 @default.
- W2945781641 cites W2077142293 @default.
- W2945781641 cites W2087499467 @default.
- W2945781641 cites W2091453021 @default.
- W2945781641 cites W2096418655 @default.
- W2945781641 cites W2113449585 @default.
- W2945781641 cites W2131844352 @default.
- W2945781641 cites W2135946028 @default.
- W2945781641 cites W2136335088 @default.
- W2945781641 cites W2136650988 @default.
- W2945781641 cites W2144603992 @default.
- W2945781641 cites W2147259528 @default.
- W2945781641 cites W2151838505 @default.
- W2945781641 cites W2157975284 @default.
- W2945781641 cites W2161616713 @default.
- W2945781641 cites W2163625542 @default.
- W2945781641 cites W2167684992 @default.
- W2945781641 cites W2168255285 @default.
- W2945781641 cites W2171398834 @default.
- W2945781641 cites W2172109574 @default.
- W2945781641 cites W2214387093 @default.
- W2945781641 cites W2281216818 @default.
- W2945781641 cites W2491424680 @default.
- W2945781641 cites W2506664189 @default.
- W2945781641 cites W2508097989 @default.
- W2945781641 cites W2525582001 @default.
- W2945781641 cites W2569571716 @default.
- W2945781641 cites W2580616261 @default.
- W2945781641 cites W2586926659 @default.
- W2945781641 cites W2587915370 @default.
- W2945781641 cites W2601059636 @default.
- W2945781641 cites W2601802066 @default.
- W2945781641 cites W2605955022 @default.
- W2945781641 cites W2614256117 @default.
- W2945781641 cites W2763350673 @default.
- W2945781641 cites W2784039673 @default.
- W2945781641 cites W2794843472 @default.
- W2945781641 cites W2797379250 @default.
- W2945781641 cites W2801812279 @default.
- W2945781641 cites W2809476315 @default.
- W2945781641 cites W2888590186 @default.
- W2945781641 cites W2891744343 @default.
- W2945781641 cites W2893126194 @default.
- W2945781641 cites W4297917711 @default.
- W2945781641 cites W50688533 @default.
- W2945781641 cites W626038165 @default.
- W2945781641 doi "https://doi.org/10.1074/jbc.ra119.007394" @default.
- W2945781641 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6664190" @default.
- W2945781641 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31092599" @default.
- W2945781641 hasPublicationYear "2019" @default.
- W2945781641 type Work @default.
- W2945781641 sameAs 2945781641 @default.
- W2945781641 citedByCount "10" @default.
- W2945781641 countsByYear W29457816412020 @default.
- W2945781641 countsByYear W29457816412021 @default.
- W2945781641 countsByYear W29457816412022 @default.
- W2945781641 countsByYear W29457816412023 @default.
- W2945781641 crossrefType "journal-article" @default.
- W2945781641 hasAuthorship W2945781641A5016535669 @default.
- W2945781641 hasAuthorship W2945781641A5025349775 @default.
- W2945781641 hasAuthorship W2945781641A5037728605 @default.