Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945784897> ?p ?o ?g. }
- W2945784897 endingPage "1115" @default.
- W2945784897 startingPage "1097" @default.
- W2945784897 abstract "Understanding the nature of the genetic regulation of gene expression promises to advance our understanding of the genetic basis of disease. However, the methodological impact of the use of local ancestry on high-dimensional omics analyses, including, most prominently, expression quantitative trait loci (eQTL) mapping and trait heritability estimation, in admixed populations remains critically underexplored. Here, we develop a statistical framework that characterizes the relationships among the determinants of the genetic architecture of an important class of molecular traits. We provide a computationally efficient approach to local ancestry analysis in eQTL mapping while increasing control of type I and type II error over traditional approaches. Applying our method to National Institute of General Medical Sciences (NIGMS) and Genotype-Tissue Expression (GTEx) datasets, we show that the use of local ancestry can improve eQTL mapping in admixed and multiethnic populations, respectively. We estimate the trait variance explained by ancestry by using local admixture relatedness between individuals. By using simulations of diverse genetic architectures and degrees of confounding, we show improved accuracy in estimating heritability when accounting for local ancestry similarity. Furthermore, we characterize the sparse versus polygenic components of gene expression in admixed individuals. Our study has important methodological implications for genetic analysis of omics traits across a range of genomic contexts, from a single variant to a prioritized region to the entire genome. Our findings highlight the importance of using local ancestry to better characterize the heritability of complex traits and to more accurately map genetic associations. Understanding the nature of the genetic regulation of gene expression promises to advance our understanding of the genetic basis of disease. However, the methodological impact of the use of local ancestry on high-dimensional omics analyses, including, most prominently, expression quantitative trait loci (eQTL) mapping and trait heritability estimation, in admixed populations remains critically underexplored. Here, we develop a statistical framework that characterizes the relationships among the determinants of the genetic architecture of an important class of molecular traits. We provide a computationally efficient approach to local ancestry analysis in eQTL mapping while increasing control of type I and type II error over traditional approaches. Applying our method to National Institute of General Medical Sciences (NIGMS) and Genotype-Tissue Expression (GTEx) datasets, we show that the use of local ancestry can improve eQTL mapping in admixed and multiethnic populations, respectively. We estimate the trait variance explained by ancestry by using local admixture relatedness between individuals. By using simulations of diverse genetic architectures and degrees of confounding, we show improved accuracy in estimating heritability when accounting for local ancestry similarity. Furthermore, we characterize the sparse versus polygenic components of gene expression in admixed individuals. Our study has important methodological implications for genetic analysis of omics traits across a range of genomic contexts, from a single variant to a prioritized region to the entire genome. Our findings highlight the importance of using local ancestry to better characterize the heritability of complex traits and to more accurately map genetic associations." @default.
- W2945784897 created "2019-05-29" @default.
- W2945784897 creator A5022639503 @default.
- W2945784897 creator A5044142497 @default.
- W2945784897 creator A5091036407 @default.
- W2945784897 date "2019-06-01" @default.
- W2945784897 modified "2023-10-18" @default.
- W2945784897 title "On Using Local Ancestry to Characterize the Genetic Architecture of Human Traits: Genetic Regulation of Gene Expression in Multiethnic or Admixed Populations" @default.
- W2945784897 cites W1533942137 @default.
- W2945784897 cites W1596515083 @default.
- W2945784897 cites W1983539381 @default.
- W2945784897 cites W1993616000 @default.
- W2945784897 cites W1999720425 @default.
- W2945784897 cites W2002752296 @default.
- W2945784897 cites W2006617902 @default.
- W2945784897 cites W2009588715 @default.
- W2945784897 cites W2033151532 @default.
- W2945784897 cites W2038234348 @default.
- W2945784897 cites W2048612325 @default.
- W2945784897 cites W2061539393 @default.
- W2945784897 cites W2064902628 @default.
- W2945784897 cites W2085459418 @default.
- W2945784897 cites W2096303238 @default.
- W2945784897 cites W2100697281 @default.
- W2945784897 cites W2104549677 @default.
- W2945784897 cites W2108169091 @default.
- W2945784897 cites W2112140283 @default.
- W2945784897 cites W2113953472 @default.
- W2945784897 cites W2117446594 @default.
- W2945784897 cites W2128371599 @default.
- W2945784897 cites W2133148918 @default.
- W2945784897 cites W2134036574 @default.
- W2945784897 cites W2135151366 @default.
- W2945784897 cites W2153860431 @default.
- W2945784897 cites W2157752701 @default.
- W2945784897 cites W2158751030 @default.
- W2945784897 cites W2161633633 @default.
- W2945784897 cites W2171816696 @default.
- W2945784897 cites W2209106767 @default.
- W2945784897 cites W2402691466 @default.
- W2945784897 cites W2555754253 @default.
- W2945784897 cites W2598022332 @default.
- W2945784897 cites W2761275051 @default.
- W2945784897 cites W2766106220 @default.
- W2945784897 cites W2952273935 @default.
- W2945784897 cites W2962931338 @default.
- W2945784897 doi "https://doi.org/10.1016/j.ajhg.2019.04.009" @default.
- W2945784897 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6562007" @default.
- W2945784897 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31104770" @default.
- W2945784897 hasPublicationYear "2019" @default.
- W2945784897 type Work @default.
- W2945784897 sameAs 2945784897 @default.
- W2945784897 citedByCount "43" @default.
- W2945784897 countsByYear W29457848972018 @default.
- W2945784897 countsByYear W29457848972019 @default.
- W2945784897 countsByYear W29457848972020 @default.
- W2945784897 countsByYear W29457848972021 @default.
- W2945784897 countsByYear W29457848972022 @default.
- W2945784897 countsByYear W29457848972023 @default.
- W2945784897 crossrefType "journal-article" @default.
- W2945784897 hasAuthorship W2945784897A5022639503 @default.
- W2945784897 hasAuthorship W2945784897A5044142497 @default.
- W2945784897 hasAuthorship W2945784897A5091036407 @default.
- W2945784897 hasBestOaLocation W29457848971 @default.
- W2945784897 hasConcept C104317684 @default.
- W2945784897 hasConcept C106208931 @default.
- W2945784897 hasConcept C106934330 @default.
- W2945784897 hasConcept C135763542 @default.
- W2945784897 hasConcept C144024400 @default.
- W2945784897 hasConcept C144621757 @default.
- W2945784897 hasConcept C149923435 @default.
- W2945784897 hasConcept C153209595 @default.
- W2945784897 hasConcept C161890455 @default.
- W2945784897 hasConcept C168393362 @default.
- W2945784897 hasConcept C193262319 @default.
- W2945784897 hasConcept C199360897 @default.
- W2945784897 hasConcept C2908647359 @default.
- W2945784897 hasConcept C2993967602 @default.
- W2945784897 hasConcept C41008148 @default.
- W2945784897 hasConcept C54355233 @default.
- W2945784897 hasConcept C68873052 @default.
- W2945784897 hasConcept C70721500 @default.
- W2945784897 hasConcept C75069973 @default.
- W2945784897 hasConcept C78458016 @default.
- W2945784897 hasConcept C81941488 @default.
- W2945784897 hasConcept C86803240 @default.
- W2945784897 hasConcept C9287583 @default.
- W2945784897 hasConceptScore W2945784897C104317684 @default.
- W2945784897 hasConceptScore W2945784897C106208931 @default.
- W2945784897 hasConceptScore W2945784897C106934330 @default.
- W2945784897 hasConceptScore W2945784897C135763542 @default.
- W2945784897 hasConceptScore W2945784897C144024400 @default.
- W2945784897 hasConceptScore W2945784897C144621757 @default.
- W2945784897 hasConceptScore W2945784897C149923435 @default.
- W2945784897 hasConceptScore W2945784897C153209595 @default.
- W2945784897 hasConceptScore W2945784897C161890455 @default.
- W2945784897 hasConceptScore W2945784897C168393362 @default.
- W2945784897 hasConceptScore W2945784897C193262319 @default.