Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945790622> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2945790622 endingPage "134" @default.
- W2945790622 startingPage "113" @default.
- W2945790622 abstract "The success of machine learning in a broad range of applications has led to an ever-growing demand for machine learning systems that can be used off the shelf by non-experts. To be effective in practice, such systems need to automatically choose a good algorithm and feature preprocessing steps for a new dataset at hand, and also set their respective hyperparameters. Recent work has started to tackle this automated machine learning (AutoML) problem with the help of efficient Bayesian optimization methods. Building on this, we introduce a robust new AutoML system based on the Python machine learning package scikit-learn (using 15 classifiers, 14 feature preprocessing methods, and 4 data preprocessing methods, giving rise to a structured hypothesis space with 110 hyperparameters). This system, which we dub Auto-sklearn, improves on existing AutoML methods by automatically taking into account past performance on similar datasets, and by constructing ensembles from the models evaluated during the optimization. Our system won six out of ten phases of the first ChaLearn AutoML challenge, and our comprehensive analysis on over 100 diverse datasets shows that it substantially outperforms the previous state of the art in AutoML. We also demonstrate the performance gains due to each of our contributions and derive insights into the effectiveness of the individual components of Auto-sklearn." @default.
- W2945790622 created "2019-05-29" @default.
- W2945790622 creator A5009742083 @default.
- W2945790622 creator A5017985443 @default.
- W2945790622 creator A5031002895 @default.
- W2945790622 creator A5044806693 @default.
- W2945790622 creator A5054262288 @default.
- W2945790622 creator A5081813991 @default.
- W2945790622 date "2019-01-01" @default.
- W2945790622 modified "2023-10-12" @default.
- W2945790622 title "Auto-sklearn: Efficient and Robust Automated Machine Learning" @default.
- W2945790622 cites W1647221522 @default.
- W2945790622 cites W1973229481 @default.
- W2945790622 cites W1980264541 @default.
- W2945790622 cites W2102539288 @default.
- W2945790622 cites W2112204321 @default.
- W2945790622 cites W2112364454 @default.
- W2945790622 cites W2132862423 @default.
- W2945790622 cites W2133990480 @default.
- W2945790622 cites W2150446468 @default.
- W2945790622 cites W2165607334 @default.
- W2945790622 cites W2192203593 @default.
- W2945790622 cites W2200000192 @default.
- W2945790622 cites W2276735006 @default.
- W2945790622 cites W2397115702 @default.
- W2945790622 cites W2604766410 @default.
- W2945790622 cites W2809880372 @default.
- W2945790622 cites W28412257 @default.
- W2945790622 cites W2963855998 @default.
- W2945790622 cites W3102476541 @default.
- W2945790622 doi "https://doi.org/10.1007/978-3-030-05318-5_6" @default.
- W2945790622 hasPublicationYear "2019" @default.
- W2945790622 type Work @default.
- W2945790622 sameAs 2945790622 @default.
- W2945790622 citedByCount "180" @default.
- W2945790622 countsByYear W29457906222018 @default.
- W2945790622 countsByYear W29457906222019 @default.
- W2945790622 countsByYear W29457906222020 @default.
- W2945790622 countsByYear W29457906222021 @default.
- W2945790622 countsByYear W29457906222022 @default.
- W2945790622 countsByYear W29457906222023 @default.
- W2945790622 crossrefType "book-chapter" @default.
- W2945790622 hasAuthorship W2945790622A5009742083 @default.
- W2945790622 hasAuthorship W2945790622A5017985443 @default.
- W2945790622 hasAuthorship W2945790622A5031002895 @default.
- W2945790622 hasAuthorship W2945790622A5044806693 @default.
- W2945790622 hasAuthorship W2945790622A5054262288 @default.
- W2945790622 hasAuthorship W2945790622A5081813991 @default.
- W2945790622 hasBestOaLocation W29457906221 @default.
- W2945790622 hasConcept C119857082 @default.
- W2945790622 hasConcept C154945302 @default.
- W2945790622 hasConcept C41008148 @default.
- W2945790622 hasConceptScore W2945790622C119857082 @default.
- W2945790622 hasConceptScore W2945790622C154945302 @default.
- W2945790622 hasConceptScore W2945790622C41008148 @default.
- W2945790622 hasLocation W29457906221 @default.
- W2945790622 hasOpenAccess W2945790622 @default.
- W2945790622 hasPrimaryLocation W29457906221 @default.
- W2945790622 hasRelatedWork W2961085424 @default.
- W2945790622 hasRelatedWork W3046775127 @default.
- W2945790622 hasRelatedWork W3107602296 @default.
- W2945790622 hasRelatedWork W3170094116 @default.
- W2945790622 hasRelatedWork W3209574120 @default.
- W2945790622 hasRelatedWork W4205958290 @default.
- W2945790622 hasRelatedWork W4286629047 @default.
- W2945790622 hasRelatedWork W4306321456 @default.
- W2945790622 hasRelatedWork W4306674287 @default.
- W2945790622 hasRelatedWork W4224009465 @default.
- W2945790622 isParatext "false" @default.
- W2945790622 isRetracted "false" @default.
- W2945790622 magId "2945790622" @default.
- W2945790622 workType "book-chapter" @default.