Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945800191> ?p ?o ?g. }
- W2945800191 abstract "Abstract Whole-brain structural networks can be constructed using diffusion MRI and probabilistic tractography. However, measurement noise and the probabilistic nature of the tracking procedure result in an unknown proportion of spurious white matter connections. Faithful disentanglement of spurious and genuine connections is hindered by a lack of comprehensive anatomical information at the network-level. Therefore, network thresholding methods are widely used to remove ostensibly false connections, but it is not yet clear how different thresholding strategies affect basic network properties and their associations with meaningful demographic variables, such as age. In a sample of 3,153 generally healthy volunteers from the UK Biobank Imaging Study (aged 44—77 years), we constructed 85 × 85 node whole-brain structural networks and applied two principled network thresholding approaches (consistency and proportional thresholding). These were applied over a broad range of threshold levels across six alternative network weightings (streamline count, fractional anisotropy, mean diffusivity and three novel weightings from neurite orientation dispersion and density imaging) and for four common network measures (mean edge weight, characteristic path length, network efficiency and network clustering coefficient). We compared network measures against age associations and found that the most commonly-used level of proportional-thresholding from the literature (retaining 68.7% of all possible connections) yielded significantly weaker age-associations (0.070 ≤ |β| ≤ 0.406) than the consistency-based approach which retained only 30% of connections (0.140 ≤ |β| ≤ 0.409). However, we determined that the stringency of the threshold was a stronger determinant of the network-age association than the choice of threshold method and the two thresholding approaches identified a highly overlapping set of connections (ICC = 0.84) when matched at a plausible level of network sparsity (70%). Generally, more stringent thresholding resulted in more age-sensitive network measures in five of the six network weightings, except at the highest levels of sparsity (>90%), where crucial connections were then removed. At two commonly-used threshold levels, the age-associations of the connections that were discarded (mean β ≤ |0.068|) were significantly smaller in magnitude than the corresponding age-associations of the connections that were retained (mean β ≤ |0.219|, p < 0.001, uncorrected). Given histological evidence of widespread degeneration of structural brain connectivity with increasing age, these results indicate that stringent thresholding methods may be most accurate in identifying true white matter connections." @default.
- W2945800191 created "2019-05-29" @default.
- W2945800191 creator A5020091527 @default.
- W2945800191 creator A5020587853 @default.
- W2945800191 creator A5049097607 @default.
- W2945800191 creator A5049892384 @default.
- W2945800191 creator A5052804210 @default.
- W2945800191 creator A5071569249 @default.
- W2945800191 creator A5080452728 @default.
- W2945800191 creator A5090686714 @default.
- W2945800191 date "2019-05-24" @default.
- W2945800191 modified "2023-09-27" @default.
- W2945800191 title "The effect of network thresholding and weighting on structural brain networks in the UK Biobank" @default.
- W2945800191 cites W1851349808 @default.
- W2945800191 cites W1919707328 @default.
- W2945800191 cites W1973412793 @default.
- W2945800191 cites W1975389666 @default.
- W2945800191 cites W1983097963 @default.
- W2945800191 cites W1985168009 @default.
- W2945800191 cites W1995138343 @default.
- W2945800191 cites W2000133863 @default.
- W2945800191 cites W2004293194 @default.
- W2945800191 cites W2008150751 @default.
- W2945800191 cites W2010001739 @default.
- W2945800191 cites W2012559638 @default.
- W2945800191 cites W2019307288 @default.
- W2945800191 cites W2020385752 @default.
- W2945800191 cites W2027094605 @default.
- W2945800191 cites W2032254014 @default.
- W2945800191 cites W2063514568 @default.
- W2945800191 cites W2071384456 @default.
- W2945800191 cites W2071881327 @default.
- W2945800191 cites W2075496760 @default.
- W2945800191 cites W2091910928 @default.
- W2945800191 cites W2097816953 @default.
- W2945800191 cites W2101135654 @default.
- W2945800191 cites W2121369614 @default.
- W2945800191 cites W2128106262 @default.
- W2945800191 cites W2141403362 @default.
- W2945800191 cites W2142059961 @default.
- W2945800191 cites W2146693559 @default.
- W2945800191 cites W2148726987 @default.
- W2945800191 cites W2149092213 @default.
- W2945800191 cites W2152573143 @default.
- W2945800191 cites W2155562431 @default.
- W2945800191 cites W2166148649 @default.
- W2945800191 cites W2166905390 @default.
- W2945800191 cites W2167822639 @default.
- W2945800191 cites W2416620990 @default.
- W2945800191 cites W2499800833 @default.
- W2945800191 cites W2503575807 @default.
- W2945800191 cites W2509721544 @default.
- W2945800191 cites W2520567684 @default.
- W2945800191 cites W2522628945 @default.
- W2945800191 cites W2523692751 @default.
- W2945800191 cites W2561810854 @default.
- W2945800191 cites W2577123365 @default.
- W2945800191 cites W2607804943 @default.
- W2945800191 cites W2622948156 @default.
- W2945800191 cites W2647803208 @default.
- W2945800191 cites W2723723801 @default.
- W2945800191 cites W2753153273 @default.
- W2945800191 cites W2766639217 @default.
- W2945800191 cites W2774306843 @default.
- W2945800191 cites W2803837136 @default.
- W2945800191 cites W2889287913 @default.
- W2945800191 cites W2889684257 @default.
- W2945800191 cites W2919731394 @default.
- W2945800191 cites W2950467641 @default.
- W2945800191 cites W2952574438 @default.
- W2945800191 cites W761823288 @default.
- W2945800191 cites W795339718 @default.
- W2945800191 doi "https://doi.org/10.1101/649418" @default.
- W2945800191 hasPublicationYear "2019" @default.
- W2945800191 type Work @default.
- W2945800191 sameAs 2945800191 @default.
- W2945800191 citedByCount "4" @default.
- W2945800191 countsByYear W29458001912019 @default.
- W2945800191 countsByYear W29458001912020 @default.
- W2945800191 crossrefType "posted-content" @default.
- W2945800191 hasAuthorship W2945800191A5020091527 @default.
- W2945800191 hasAuthorship W2945800191A5020587853 @default.
- W2945800191 hasAuthorship W2945800191A5049097607 @default.
- W2945800191 hasAuthorship W2945800191A5049892384 @default.
- W2945800191 hasAuthorship W2945800191A5052804210 @default.
- W2945800191 hasAuthorship W2945800191A5071569249 @default.
- W2945800191 hasAuthorship W2945800191A5080452728 @default.
- W2945800191 hasAuthorship W2945800191A5090686714 @default.
- W2945800191 hasBestOaLocation W29458001911 @default.
- W2945800191 hasConcept C105795698 @default.
- W2945800191 hasConcept C115961682 @default.
- W2945800191 hasConcept C124101348 @default.
- W2945800191 hasConcept C126838900 @default.
- W2945800191 hasConcept C143409427 @default.
- W2945800191 hasConcept C149550507 @default.
- W2945800191 hasConcept C153180895 @default.
- W2945800191 hasConcept C154945302 @default.
- W2945800191 hasConcept C191178318 @default.
- W2945800191 hasConcept C2776436953 @default.
- W2945800191 hasConcept C33923547 @default.