Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945839017> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2945839017 endingPage "643" @default.
- W2945839017 startingPage "631" @default.
- W2945839017 abstract "Better understanding of large-scale brain dynamics with functional magnetic resonance imaging (fMRI) data is a major goal of modern neuroscience. In this work, we propose a novel hierarchical manifold learning framework for time-synchronized fMRI data for elucidating brain dynamics. Our framework—labelled 2-step diffusion maps (2sDM)—is based on diffusion maps, a nonlinear dimensionality reduction method. First, 2sDM learns the manifold of fMRI data for each individual separately and then learns a low-dimensional group-level embedding by integrating individual information. We also propose a method for out-of-sample extension within our hierarchical framework. Using 2sDM, we constructed a single manifold structure based on 6 different task-based fMRI (tfMRI) runs. Results on the tfMRI data show a clear manifold structure with four distinct clusters, or brain states. We extended this to embedding resting-state fMRI (rsfMRI) data by first synchronizing across individuals using an optimal orthogonal transformation. The rsfMRI data from the same individuals cleanly embedded onto the four clusters, suggesting that rsfMRI is a collection of different brains states. Overall, our results highlight 2sDM as a powerful method to understand brain dynamics and show that tfMRI and rsfMRI data share representative brain states." @default.
- W2945839017 created "2019-05-29" @default.
- W2945839017 creator A5055510275 @default.
- W2945839017 creator A5075832074 @default.
- W2945839017 creator A5089561890 @default.
- W2945839017 date "2019-01-01" @default.
- W2945839017 modified "2023-10-17" @default.
- W2945839017 title "A Hierarchical Manifold Learning Framework for High-Dimensional Neuroimaging Data" @default.
- W2945839017 cites W1846858683 @default.
- W2945839017 cites W2007894316 @default.
- W2945839017 cites W2024729467 @default.
- W2945839017 cites W2085561705 @default.
- W2945839017 cites W2117684310 @default.
- W2945839017 cites W2136567909 @default.
- W2945839017 cites W2170702893 @default.
- W2945839017 cites W2595251296 @default.
- W2945839017 cites W2621961142 @default.
- W2945839017 cites W2766284800 @default.
- W2945839017 cites W2793719316 @default.
- W2945839017 cites W2794588379 @default.
- W2945839017 cites W2884973735 @default.
- W2945839017 cites W4213367101 @default.
- W2945839017 doi "https://doi.org/10.1007/978-3-030-20351-1_49" @default.
- W2945839017 hasPublicationYear "2019" @default.
- W2945839017 type Work @default.
- W2945839017 sameAs 2945839017 @default.
- W2945839017 citedByCount "2" @default.
- W2945839017 countsByYear W29458390172020 @default.
- W2945839017 countsByYear W29458390172021 @default.
- W2945839017 crossrefType "book-chapter" @default.
- W2945839017 hasAuthorship W2945839017A5055510275 @default.
- W2945839017 hasAuthorship W2945839017A5075832074 @default.
- W2945839017 hasAuthorship W2945839017A5089561890 @default.
- W2945839017 hasConcept C111030470 @default.
- W2945839017 hasConcept C127413603 @default.
- W2945839017 hasConcept C151876577 @default.
- W2945839017 hasConcept C153120616 @default.
- W2945839017 hasConcept C153180895 @default.
- W2945839017 hasConcept C154945302 @default.
- W2945839017 hasConcept C15744967 @default.
- W2945839017 hasConcept C169760540 @default.
- W2945839017 hasConcept C2779226451 @default.
- W2945839017 hasConcept C41008148 @default.
- W2945839017 hasConcept C41608201 @default.
- W2945839017 hasConcept C529865628 @default.
- W2945839017 hasConcept C54170458 @default.
- W2945839017 hasConcept C55128770 @default.
- W2945839017 hasConcept C70518039 @default.
- W2945839017 hasConcept C78519656 @default.
- W2945839017 hasConceptScore W2945839017C111030470 @default.
- W2945839017 hasConceptScore W2945839017C127413603 @default.
- W2945839017 hasConceptScore W2945839017C151876577 @default.
- W2945839017 hasConceptScore W2945839017C153120616 @default.
- W2945839017 hasConceptScore W2945839017C153180895 @default.
- W2945839017 hasConceptScore W2945839017C154945302 @default.
- W2945839017 hasConceptScore W2945839017C15744967 @default.
- W2945839017 hasConceptScore W2945839017C169760540 @default.
- W2945839017 hasConceptScore W2945839017C2779226451 @default.
- W2945839017 hasConceptScore W2945839017C41008148 @default.
- W2945839017 hasConceptScore W2945839017C41608201 @default.
- W2945839017 hasConceptScore W2945839017C529865628 @default.
- W2945839017 hasConceptScore W2945839017C54170458 @default.
- W2945839017 hasConceptScore W2945839017C55128770 @default.
- W2945839017 hasConceptScore W2945839017C70518039 @default.
- W2945839017 hasConceptScore W2945839017C78519656 @default.
- W2945839017 hasLocation W29458390171 @default.
- W2945839017 hasOpenAccess W2945839017 @default.
- W2945839017 hasPrimaryLocation W29458390171 @default.
- W2945839017 hasRelatedWork W117517268 @default.
- W2945839017 hasRelatedWork W1973666623 @default.
- W2945839017 hasRelatedWork W2053907657 @default.
- W2945839017 hasRelatedWork W2068726834 @default.
- W2945839017 hasRelatedWork W2362829263 @default.
- W2945839017 hasRelatedWork W2364156185 @default.
- W2945839017 hasRelatedWork W2383239174 @default.
- W2945839017 hasRelatedWork W2573981081 @default.
- W2945839017 hasRelatedWork W3179356394 @default.
- W2945839017 hasRelatedWork W4287077912 @default.
- W2945839017 isParatext "false" @default.
- W2945839017 isRetracted "false" @default.
- W2945839017 magId "2945839017" @default.
- W2945839017 workType "book-chapter" @default.