Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945887213> ?p ?o ?g. }
- W2945887213 endingPage "72955" @default.
- W2945887213 startingPage "72936" @default.
- W2945887213 abstract "Clustering is one of the most important topics in data mining and machine learning. The density peaks clustering (DPC) algorithm is a well-known density-based clustering method that can efficiently and effectively deal with non-spherical clusters. However, the computational methods of the local density and the distance measure are simple and easily ignore the correlation and the similarity between samples, and the manual setting of parameters has a great influence on the clustering results; therefore, the clustering performance of DPC is poor on the high-dimensional datasets. To address these issues, this paper presents an adaptive DPC algorithm with Fisher linear discriminant for the clustering of complex datasets, called ADPC-FLD. First, the kernel density estimation function is introduced to calculate the local density of the sample points. Pearson correlation coefficient between samples as weight is employed to construct a weighted Euclidean distance function to measure the distance between samples. This considers both the spatial structure and the correlation of the samples. Then, a novel density estimation entropy is proposed, and based on the minimization of density estimation entropy, the density estimation parameters are adaptively selected according to the distribution characteristics of the data, which can efficiently eliminate the influence of manual setting. Third, an adaptive strategy of cluster center selection is designed to avoid the error caused by the noise data as the cluster centers and the uncertainty of manually selecting the cluster centers. Finally, Fisher linear discriminant algorithm is used to eliminate the irrelevant information and reduce the dimensionality of high-dimensional data, following on which an adaptive DPC method is implemented on six synthetic datasets, thirteen UCI datasets and seven gene expression datasets for comparing with other related algorithms. The experimental results on 26 datasets show that the proposed algorithm significantly outperforms several outstanding clustering approaches in terms of clustering accuracy and efficiency." @default.
- W2945887213 created "2019-05-29" @default.
- W2945887213 creator A5004055512 @default.
- W2945887213 creator A5014961410 @default.
- W2945887213 creator A5058970337 @default.
- W2945887213 creator A5063066634 @default.
- W2945887213 date "2019-01-01" @default.
- W2945887213 modified "2023-10-18" @default.
- W2945887213 title "An Adaptive Density Peaks Clustering Method With Fisher Linear Discriminant" @default.
- W2945887213 cites W1600471557 @default.
- W2945887213 cites W1977556410 @default.
- W2945887213 cites W1997201895 @default.
- W2945887213 cites W2001619934 @default.
- W2945887213 cites W2002466782 @default.
- W2945887213 cites W2030644393 @default.
- W2945887213 cites W2113242816 @default.
- W2945887213 cites W2123822128 @default.
- W2945887213 cites W2158703410 @default.
- W2945887213 cites W2160642098 @default.
- W2945887213 cites W2165232124 @default.
- W2945887213 cites W2165835468 @default.
- W2945887213 cites W2167686991 @default.
- W2945887213 cites W2168103112 @default.
- W2945887213 cites W2268194897 @default.
- W2945887213 cites W2283618637 @default.
- W2945887213 cites W2287979797 @default.
- W2945887213 cites W2293435807 @default.
- W2945887213 cites W2301695553 @default.
- W2945887213 cites W2490420619 @default.
- W2945887213 cites W2494454509 @default.
- W2945887213 cites W2507499466 @default.
- W2945887213 cites W2549966893 @default.
- W2945887213 cites W2570647573 @default.
- W2945887213 cites W2581016781 @default.
- W2945887213 cites W2586696502 @default.
- W2945887213 cites W2588831500 @default.
- W2945887213 cites W2598149505 @default.
- W2945887213 cites W2605641866 @default.
- W2945887213 cites W2609983914 @default.
- W2945887213 cites W2635535303 @default.
- W2945887213 cites W2729531028 @default.
- W2945887213 cites W2734337707 @default.
- W2945887213 cites W2737994327 @default.
- W2945887213 cites W2759144750 @default.
- W2945887213 cites W2768535638 @default.
- W2945887213 cites W2789456849 @default.
- W2945887213 cites W2804388974 @default.
- W2945887213 cites W2806325243 @default.
- W2945887213 cites W2887102415 @default.
- W2945887213 cites W2889892655 @default.
- W2945887213 cites W2890734732 @default.
- W2945887213 cites W2898517484 @default.
- W2945887213 cites W2899142335 @default.
- W2945887213 cites W2900069527 @default.
- W2945887213 cites W2901163020 @default.
- W2945887213 cites W2903517898 @default.
- W2945887213 cites W2907453707 @default.
- W2945887213 cites W2911964244 @default.
- W2945887213 cites W2915505288 @default.
- W2945887213 cites W3104298728 @default.
- W2945887213 doi "https://doi.org/10.1109/access.2019.2918952" @default.
- W2945887213 hasPublicationYear "2019" @default.
- W2945887213 type Work @default.
- W2945887213 sameAs 2945887213 @default.
- W2945887213 citedByCount "30" @default.
- W2945887213 countsByYear W29458872132019 @default.
- W2945887213 countsByYear W29458872132020 @default.
- W2945887213 countsByYear W29458872132021 @default.
- W2945887213 countsByYear W29458872132022 @default.
- W2945887213 countsByYear W29458872132023 @default.
- W2945887213 crossrefType "journal-article" @default.
- W2945887213 hasAuthorship W2945887213A5004055512 @default.
- W2945887213 hasAuthorship W2945887213A5014961410 @default.
- W2945887213 hasAuthorship W2945887213A5058970337 @default.
- W2945887213 hasAuthorship W2945887213A5063066634 @default.
- W2945887213 hasBestOaLocation W29458872131 @default.
- W2945887213 hasConcept C105795698 @default.
- W2945887213 hasConcept C106301342 @default.
- W2945887213 hasConcept C11413529 @default.
- W2945887213 hasConcept C115328559 @default.
- W2945887213 hasConcept C120174047 @default.
- W2945887213 hasConcept C121332964 @default.
- W2945887213 hasConcept C124101348 @default.
- W2945887213 hasConcept C153180895 @default.
- W2945887213 hasConcept C154945302 @default.
- W2945887213 hasConcept C17212007 @default.
- W2945887213 hasConcept C184509293 @default.
- W2945887213 hasConcept C185429906 @default.
- W2945887213 hasConcept C189508267 @default.
- W2945887213 hasConcept C33704608 @default.
- W2945887213 hasConcept C33923547 @default.
- W2945887213 hasConcept C41008148 @default.
- W2945887213 hasConcept C62520636 @default.
- W2945887213 hasConcept C71134354 @default.
- W2945887213 hasConcept C73555534 @default.
- W2945887213 hasConcept C94641424 @default.
- W2945887213 hasConceptScore W2945887213C105795698 @default.
- W2945887213 hasConceptScore W2945887213C106301342 @default.