Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945950025> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2945950025 abstract "Contemporaneous research has strongly indicated that most of the data on the Internet are unstructured data due to the phenomenon that during the input, processing of data and collection and storage of data by almost all the entities involved do not keep the data in a format that complies with a certain structure; this scenario has a domino effect on retrieving information should there be any inquiry. A part and parcel of semantic web area is data extraction and crucial for linking question and answer in the web. Should a question is pitched, it requires semantic analysis of data—both, structured and unstructured, map each part of the answer to the relevance of the question. Information extraction entails a crucial area of natural language processing and without the proper application of data acquisition from really large data set, for instance billions of alphanumeric words—the required data are hardly ever on the receiving end. The practical application, however, certainly needs answers that are succinct, correct and to the point; often times, the readers would skim-read through each answer as they themselves have to decide on which is more accurate to their question. This poses a unique challenge, a scenario where the question is incomplete; the answer is hidden under layers of data, and to make the query even more complex, researchers add the languages that are available. For English, a lot of researches have been conducted and due to the exceptional amount of usage among all the entities alike, English language has passed the initial issues and has been producing nearly ninety-nine percent accurate data. That is not the case for Bengali semantic analysis, and deriving meaningful information has been a challenge. This paper proposes a decisive algorithm to acquire meaningful and relevant data from unstructured data. The exactitude and efficiency of target data extraction depend on reasoning and analysis of unstructured data. Here, Universal Networking Language (UNL) has been applied to the proposed method to bring out the desired output. In this method, exceptionally large data sets that are unstructured have been categorized in prespecified relation with the help of UNL, and on these relations, every word of a sentence has been compared in binary relation. Finally, the proposed method extracts information from these binary relations." @default.
- W2945950025 created "2019-05-29" @default.
- W2945950025 creator A5008569306 @default.
- W2945950025 creator A5016730902 @default.
- W2945950025 creator A5046296055 @default.
- W2945950025 creator A5071208302 @default.
- W2945950025 date "2019-01-01" @default.
- W2945950025 modified "2023-09-26" @default.
- W2945950025 title "Information Extraction from Natural Language Using Universal Networking Language" @default.
- W2945950025 cites W1538804767 @default.
- W2945950025 cites W1986386500 @default.
- W2945950025 cites W2015103882 @default.
- W2945950025 cites W2081388731 @default.
- W2945950025 cites W2097606805 @default.
- W2945950025 cites W2128774237 @default.
- W2945950025 cites W2168947731 @default.
- W2945950025 cites W2169232658 @default.
- W2945950025 cites W2281682023 @default.
- W2945950025 cites W2598013127 @default.
- W2945950025 cites W2891566762 @default.
- W2945950025 doi "https://doi.org/10.1007/978-981-13-6861-5_24" @default.
- W2945950025 hasPublicationYear "2019" @default.
- W2945950025 type Work @default.
- W2945950025 sameAs 2945950025 @default.
- W2945950025 citedByCount "0" @default.
- W2945950025 crossrefType "book-chapter" @default.
- W2945950025 hasAuthorship W2945950025A5008569306 @default.
- W2945950025 hasAuthorship W2945950025A5016730902 @default.
- W2945950025 hasAuthorship W2945950025A5046296055 @default.
- W2945950025 hasAuthorship W2945950025A5071208302 @default.
- W2945950025 hasConcept C110875604 @default.
- W2945950025 hasConcept C124101348 @default.
- W2945950025 hasConcept C136764020 @default.
- W2945950025 hasConcept C154945302 @default.
- W2945950025 hasConcept C158154518 @default.
- W2945950025 hasConcept C177264268 @default.
- W2945950025 hasConcept C17744445 @default.
- W2945950025 hasConcept C195324797 @default.
- W2945950025 hasConcept C195807954 @default.
- W2945950025 hasConcept C199360897 @default.
- W2945950025 hasConcept C199539241 @default.
- W2945950025 hasConcept C204321447 @default.
- W2945950025 hasConcept C2129575 @default.
- W2945950025 hasConcept C23123220 @default.
- W2945950025 hasConcept C2524010 @default.
- W2945950025 hasConcept C2781003394 @default.
- W2945950025 hasConcept C2781252014 @default.
- W2945950025 hasConcept C28719098 @default.
- W2945950025 hasConcept C33923547 @default.
- W2945950025 hasConcept C41008148 @default.
- W2945950025 hasConcept C75684735 @default.
- W2945950025 hasConceptScore W2945950025C110875604 @default.
- W2945950025 hasConceptScore W2945950025C124101348 @default.
- W2945950025 hasConceptScore W2945950025C136764020 @default.
- W2945950025 hasConceptScore W2945950025C154945302 @default.
- W2945950025 hasConceptScore W2945950025C158154518 @default.
- W2945950025 hasConceptScore W2945950025C177264268 @default.
- W2945950025 hasConceptScore W2945950025C17744445 @default.
- W2945950025 hasConceptScore W2945950025C195324797 @default.
- W2945950025 hasConceptScore W2945950025C195807954 @default.
- W2945950025 hasConceptScore W2945950025C199360897 @default.
- W2945950025 hasConceptScore W2945950025C199539241 @default.
- W2945950025 hasConceptScore W2945950025C204321447 @default.
- W2945950025 hasConceptScore W2945950025C2129575 @default.
- W2945950025 hasConceptScore W2945950025C23123220 @default.
- W2945950025 hasConceptScore W2945950025C2524010 @default.
- W2945950025 hasConceptScore W2945950025C2781003394 @default.
- W2945950025 hasConceptScore W2945950025C2781252014 @default.
- W2945950025 hasConceptScore W2945950025C28719098 @default.
- W2945950025 hasConceptScore W2945950025C33923547 @default.
- W2945950025 hasConceptScore W2945950025C41008148 @default.
- W2945950025 hasConceptScore W2945950025C75684735 @default.
- W2945950025 hasLocation W29459500251 @default.
- W2945950025 hasOpenAccess W2945950025 @default.
- W2945950025 hasPrimaryLocation W29459500251 @default.
- W2945950025 hasRelatedWork W1511492033 @default.
- W2945950025 hasRelatedWork W1561729373 @default.
- W2945950025 hasRelatedWork W2086253379 @default.
- W2945950025 hasRelatedWork W2107291233 @default.
- W2945950025 hasRelatedWork W2134804405 @default.
- W2945950025 hasRelatedWork W2216726341 @default.
- W2945950025 hasRelatedWork W2310351362 @default.
- W2945950025 hasRelatedWork W2945950025 @default.
- W2945950025 hasRelatedWork W74549420 @default.
- W2945950025 hasRelatedWork W2796728524 @default.
- W2945950025 isParatext "false" @default.
- W2945950025 isRetracted "false" @default.
- W2945950025 magId "2945950025" @default.
- W2945950025 workType "book-chapter" @default.