Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946006026> ?p ?o ?g. }
- W2946006026 abstract "Given a large number of covariates $Z$, we consider the estimation of a high-dimensional parameter $theta$ in an individualized linear threshold $theta^T Z$ for a continuous variable $X$, which minimizes the disagreement between $text{sign}(X-theta^TZ)$ and a binary response $Y$. While the problem can be formulated into the M-estimation framework, minimizing the corresponding empirical risk function is computationally intractable due to discontinuity of the sign function. Moreover, estimating $theta$ even in the fixed-dimensional setting is known as a nonregular problem leading to nonstandard asymptotic theory. To tackle the computational and theoretical challenges in the estimation of the high-dimensional parameter $theta$, we propose an empirical risk minimization approach based on a regularized smoothed loss function. The statistical and computational trade-off of the algorithm is investigated. Statistically, we show that the finite sample error bound for estimating $theta$ in $ell_2$ norm is $(slog d/n)^{beta/(2beta+1)}$, where $d$ is the dimension of $theta$, $s$ is the sparsity level, $n$ is the sample size and $beta$ is the smoothness of the conditional density of $X$ given the response $Y$ and the covariates $Z$. The convergence rate is nonstandard and slower than that in the classical Lasso problems. Furthermore, we prove that the resulting estimator is minimax rate optimal up to a logarithmic factor. The Lepski's method is developed to achieve the adaption to the unknown sparsity $s$ and smoothness $beta$. Computationally, an efficient path-following algorithm is proposed to compute the solution path. We show that this algorithm achieves geometric rate of convergence for computing the whole path. Finally, we evaluate the finite sample performance of the proposed estimator in simulation studies and a real data analysis." @default.
- W2946006026 created "2019-05-29" @default.
- W2946006026 creator A5003058598 @default.
- W2946006026 creator A5070406375 @default.
- W2946006026 creator A5083969121 @default.
- W2946006026 date "2019-05-26" @default.
- W2946006026 modified "2023-09-27" @default.
- W2946006026 title "Nonregular and Minimax Estimation of Individualized Thresholds in High Dimension with Binary Responses" @default.
- W2946006026 cites W1509689762 @default.
- W2946006026 cites W1511694993 @default.
- W2946006026 cites W1538269260 @default.
- W2946006026 cites W1874232560 @default.
- W2946006026 cites W1894828066 @default.
- W2946006026 cites W1994857208 @default.
- W2946006026 cites W1995642533 @default.
- W2946006026 cites W2030161963 @default.
- W2946006026 cites W2030843733 @default.
- W2946006026 cites W2046675234 @default.
- W2946006026 cites W2049393399 @default.
- W2946006026 cites W2060430274 @default.
- W2946006026 cites W2063978378 @default.
- W2946006026 cites W2065856880 @default.
- W2946006026 cites W2089394015 @default.
- W2946006026 cites W2101095383 @default.
- W2946006026 cites W2101157574 @default.
- W2946006026 cites W2111084117 @default.
- W2946006026 cites W2111992537 @default.
- W2946006026 cites W2112090892 @default.
- W2946006026 cites W2116039321 @default.
- W2946006026 cites W2129131372 @default.
- W2946006026 cites W2137911812 @default.
- W2946006026 cites W2141195893 @default.
- W2946006026 cites W2152575748 @default.
- W2946006026 cites W2161227280 @default.
- W2946006026 cites W2728289232 @default.
- W2946006026 cites W2756630952 @default.
- W2946006026 cites W2796930163 @default.
- W2946006026 cites W2925037326 @default.
- W2946006026 cites W2950190315 @default.
- W2946006026 cites W2962710557 @default.
- W2946006026 cites W2963943067 @default.
- W2946006026 cites W3100058837 @default.
- W2946006026 cites W3100883892 @default.
- W2946006026 cites W3103820806 @default.
- W2946006026 cites W340056678 @default.
- W2946006026 doi "https://doi.org/10.48550/arxiv.1905.10888" @default.
- W2946006026 hasPublicationYear "2019" @default.
- W2946006026 type Work @default.
- W2946006026 sameAs 2946006026 @default.
- W2946006026 citedByCount "0" @default.
- W2946006026 crossrefType "posted-content" @default.
- W2946006026 hasAuthorship W2946006026A5003058598 @default.
- W2946006026 hasAuthorship W2946006026A5070406375 @default.
- W2946006026 hasAuthorship W2946006026A5083969121 @default.
- W2946006026 hasBestOaLocation W29460060261 @default.
- W2946006026 hasConcept C102634674 @default.
- W2946006026 hasConcept C105795698 @default.
- W2946006026 hasConcept C107321475 @default.
- W2946006026 hasConcept C114614502 @default.
- W2946006026 hasConcept C119043178 @default.
- W2946006026 hasConcept C126255220 @default.
- W2946006026 hasConcept C129848803 @default.
- W2946006026 hasConcept C134306372 @default.
- W2946006026 hasConcept C14036430 @default.
- W2946006026 hasConcept C149728462 @default.
- W2946006026 hasConcept C185429906 @default.
- W2946006026 hasConcept C28826006 @default.
- W2946006026 hasConcept C33676613 @default.
- W2946006026 hasConcept C33923547 @default.
- W2946006026 hasConcept C39927690 @default.
- W2946006026 hasConcept C78458016 @default.
- W2946006026 hasConcept C86803240 @default.
- W2946006026 hasConceptScore W2946006026C102634674 @default.
- W2946006026 hasConceptScore W2946006026C105795698 @default.
- W2946006026 hasConceptScore W2946006026C107321475 @default.
- W2946006026 hasConceptScore W2946006026C114614502 @default.
- W2946006026 hasConceptScore W2946006026C119043178 @default.
- W2946006026 hasConceptScore W2946006026C126255220 @default.
- W2946006026 hasConceptScore W2946006026C129848803 @default.
- W2946006026 hasConceptScore W2946006026C134306372 @default.
- W2946006026 hasConceptScore W2946006026C14036430 @default.
- W2946006026 hasConceptScore W2946006026C149728462 @default.
- W2946006026 hasConceptScore W2946006026C185429906 @default.
- W2946006026 hasConceptScore W2946006026C28826006 @default.
- W2946006026 hasConceptScore W2946006026C33676613 @default.
- W2946006026 hasConceptScore W2946006026C33923547 @default.
- W2946006026 hasConceptScore W2946006026C39927690 @default.
- W2946006026 hasConceptScore W2946006026C78458016 @default.
- W2946006026 hasConceptScore W2946006026C86803240 @default.
- W2946006026 hasLocation W29460060261 @default.
- W2946006026 hasOpenAccess W2946006026 @default.
- W2946006026 hasPrimaryLocation W29460060261 @default.
- W2946006026 hasRelatedWork W2011126830 @default.
- W2946006026 hasRelatedWork W2058031810 @default.
- W2946006026 hasRelatedWork W2281835880 @default.
- W2946006026 hasRelatedWork W2951706192 @default.
- W2946006026 hasRelatedWork W2963182765 @default.
- W2946006026 hasRelatedWork W3123935509 @default.
- W2946006026 hasRelatedWork W3193748961 @default.
- W2946006026 hasRelatedWork W4291519755 @default.