Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946007013> ?p ?o ?g. }
- W2946007013 endingPage "380" @default.
- W2946007013 startingPage "370" @default.
- W2946007013 abstract "Many technologies have been developed to control agricultural non-point-source pollution (ANPSP). However, most reduce pollution from only a single source instead of considering an entire region with multiple pollution sources as a control unit. A pollutant reduction system for controlling ANPSP at a regional scale could be built by integrating technologies and the reuse of treated wastewater (TWR) and nutrients (NR) to protect the environment and achieve agricultural sustainability. The present study proposes four systematic schemes involving TWR for irrigation and NR in a region with three sources of ANPSP (crop farming, livestock and aquaculture). Subsequently, a multi-objective evaluation model is established based on the analytical hierarchy process (AHP) combined with grey relational analysis (GRA) to identify the optimal scheme considering six indices, namely, pollutant reductions (total nitrogen, TN; total phosphorous, TP; ammonium-nitrogen, NH4+-N; and chemical oxygen demand, COD) and costs (construction and operational costs). The Taihu Lake Basin suffers from some of the worst ANPSP in China, and a case study was conducted in a town with three ANPSP sources. Four systems were developed on the basis of suggested technologies and the scenarios of TWR and NR (Scenario I: no reuse, Scenario II: reuse of all livestock wastewater and manure, Scenario III: reuse of some aquaculture wastewater, and Scenario IV: reuse of all livestock wastewater and manure and some aquaculture wastewater). Pollutant reductions were calculated based on removal efficiency and pollutant loads, which were estimated from the local pollutant export coefficients and agricultural information (crop farming, livestock, and aquaculture). The costs were determined on the basis of the total pollutant reductions and unit cost. The results showed that the optimal system was the Scenario IV because it had the highest grey correlation degree among the four proposed systems. The optimal system met the irrigation water demand in Xinjian. In the optimal system, the removal efficiencies of the pollutants TN, TP, NH4+-N, and COD were 84.3%, 94.2%, 89.6% and 94.0%, respectively. In addition, the implementation of NR in the optimal system reduced the use of chemical fertilizers by nearly 81.7 kg N ha−1 and 39.9 kg P ha−1. The proposed methods provide a reference for the construction of a pollutant reduction system for controlling ANPSP in a multi-source region." @default.
- W2946007013 created "2019-05-29" @default.
- W2946007013 creator A5003944945 @default.
- W2946007013 creator A5020069755 @default.
- W2946007013 creator A5053935720 @default.
- W2946007013 creator A5057099844 @default.
- W2946007013 creator A5063481044 @default.
- W2946007013 creator A5075705249 @default.
- W2946007013 creator A5082542109 @default.
- W2946007013 creator A5087592842 @default.
- W2946007013 date "2019-08-01" @default.
- W2946007013 modified "2023-10-14" @default.
- W2946007013 title "Optimization of pollutant reduction system for controlling agricultural non-point-source pollution based on grey relational analysis combined with analytic hierarchy process" @default.
- W2946007013 cites W1518163169 @default.
- W2946007013 cites W1870540947 @default.
- W2946007013 cites W1965920041 @default.
- W2946007013 cites W1969775266 @default.
- W2946007013 cites W1972000617 @default.
- W2946007013 cites W1974123863 @default.
- W2946007013 cites W1977993961 @default.
- W2946007013 cites W1979151374 @default.
- W2946007013 cites W1982990122 @default.
- W2946007013 cites W1986349148 @default.
- W2946007013 cites W1987698895 @default.
- W2946007013 cites W1992132722 @default.
- W2946007013 cites W1998146383 @default.
- W2946007013 cites W2019740088 @default.
- W2946007013 cites W2030131479 @default.
- W2946007013 cites W2032955163 @default.
- W2946007013 cites W2041593875 @default.
- W2946007013 cites W2046078150 @default.
- W2946007013 cites W2051967800 @default.
- W2946007013 cites W2052937611 @default.
- W2946007013 cites W2053291878 @default.
- W2946007013 cites W2064828954 @default.
- W2946007013 cites W2079466793 @default.
- W2946007013 cites W2087711320 @default.
- W2946007013 cites W2090678770 @default.
- W2946007013 cites W2094239674 @default.
- W2946007013 cites W2094293662 @default.
- W2946007013 cites W2096032198 @default.
- W2946007013 cites W2101409709 @default.
- W2946007013 cites W2114709840 @default.
- W2946007013 cites W2117215444 @default.
- W2946007013 cites W2209998815 @default.
- W2946007013 cites W2266256322 @default.
- W2946007013 cites W2331902888 @default.
- W2946007013 cites W2559999771 @default.
- W2946007013 cites W2596355965 @default.
- W2946007013 cites W2607131306 @default.
- W2946007013 cites W2739704731 @default.
- W2946007013 cites W2771272502 @default.
- W2946007013 cites W2803228693 @default.
- W2946007013 cites W2808163109 @default.
- W2946007013 cites W2883938626 @default.
- W2946007013 cites W2896828301 @default.
- W2946007013 cites W2913205728 @default.
- W2946007013 cites W2914478731 @default.
- W2946007013 doi "https://doi.org/10.1016/j.jenvman.2019.04.089" @default.
- W2946007013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31103682" @default.
- W2946007013 hasPublicationYear "2019" @default.
- W2946007013 type Work @default.
- W2946007013 sameAs 2946007013 @default.
- W2946007013 citedByCount "28" @default.
- W2946007013 countsByYear W29460070132019 @default.
- W2946007013 countsByYear W29460070132020 @default.
- W2946007013 countsByYear W29460070132021 @default.
- W2946007013 countsByYear W29460070132022 @default.
- W2946007013 countsByYear W29460070132023 @default.
- W2946007013 crossrefType "journal-article" @default.
- W2946007013 hasAuthorship W2946007013A5003944945 @default.
- W2946007013 hasAuthorship W2946007013A5020069755 @default.
- W2946007013 hasAuthorship W2946007013A5053935720 @default.
- W2946007013 hasAuthorship W2946007013A5057099844 @default.
- W2946007013 hasAuthorship W2946007013A5063481044 @default.
- W2946007013 hasAuthorship W2946007013A5075705249 @default.
- W2946007013 hasAuthorship W2946007013A5082542109 @default.
- W2946007013 hasAuthorship W2946007013A5087592842 @default.
- W2946007013 hasConcept C118518473 @default.
- W2946007013 hasConcept C127413603 @default.
- W2946007013 hasConcept C166957645 @default.
- W2946007013 hasConcept C18903297 @default.
- W2946007013 hasConcept C205649164 @default.
- W2946007013 hasConcept C206588197 @default.
- W2946007013 hasConcept C39432304 @default.
- W2946007013 hasConcept C42475967 @default.
- W2946007013 hasConcept C521259446 @default.
- W2946007013 hasConcept C548081761 @default.
- W2946007013 hasConcept C82685317 @default.
- W2946007013 hasConcept C86803240 @default.
- W2946007013 hasConcept C87345402 @default.
- W2946007013 hasConcept C87717796 @default.
- W2946007013 hasConcept C94061648 @default.
- W2946007013 hasConceptScore W2946007013C118518473 @default.
- W2946007013 hasConceptScore W2946007013C127413603 @default.
- W2946007013 hasConceptScore W2946007013C166957645 @default.
- W2946007013 hasConceptScore W2946007013C18903297 @default.
- W2946007013 hasConceptScore W2946007013C205649164 @default.