Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946061185> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2946061185 endingPage "586" @default.
- W2946061185 startingPage "580" @default.
- W2946061185 abstract "Laparoscopic metabolic surgery (MxS) can lead to remission of type 2 diabetes (T2D); however, treatment response to MxS can be heterogeneous. Here, we demonstrate an open-source predictive analytics platform that applies machine-learning techniques to a common data model; we develop and validate a predictive model of antihyperglycemic medication cessation (validated proxy for A1c control) in patients with treated T2D who underwent MxS.We selected patients meeting the following criteria in 2 large US healthcare claims databases (Truven Health MarketScan Commercial [CCAE]; Optum Clinformatics [Optum]): underwent MxS between January 1, 2007, to October 1, 2013 (first = index); aged ≥18 years; continuous enrollment 180 days pre-index (baseline) to 730 days postindex; baseline T2D diagnosis and treatment. The outcome was no antihyperglycemic medication treatment from 365 to 730 days after MxS. A regularized logistic regression model was trained using the following candidate predictor categories measured at baseline: demographics, conditions, medications, measurements, and procedures. A 75% to 25% split of the CCAE group was used for model training and testing; the Optum group was used for external validation.13 050 (CCAE) and 3477 (Optum) patients met the study inclusion criteria. Antihyperglycemic medication cessation rates were 72.9% (CCAE) and 70.8% (Optum). The model possessed good internal discriminative accuracy (area under the curve [AUC] = 0.778 [95% CI = 0.761-0.795] in CCAE test set N = 3527) and transportability (external AUC = 0.759 [95% CI = 0.741-0.777] in Optum N = 3477).The application of machine learning techniques to real-world healthcare data can yield useful predictive models to assist patient selection. In future practice, establishment of prerequisite technological infrastructure will be needed to implement such models for real-world decision support." @default.
- W2946061185 created "2019-05-29" @default.
- W2946061185 creator A5005037336 @default.
- W2946061185 creator A5018579603 @default.
- W2946061185 creator A5031506291 @default.
- W2946061185 creator A5035831173 @default.
- W2946061185 creator A5067868620 @default.
- W2946061185 creator A5087364145 @default.
- W2946061185 date "2019-05-01" @default.
- W2946061185 modified "2023-10-16" @default.
- W2946061185 title "Using Machine Learning Applied to Real-World Healthcare Data for Predictive Analytics: An Applied Example in Bariatric Surgery" @default.
- W2946061185 cites W1852952780 @default.
- W2946061185 cites W2020723829 @default.
- W2946061185 cites W2116530272 @default.
- W2946061185 cites W2159900339 @default.
- W2946061185 cites W2288263337 @default.
- W2946061185 cites W2288368339 @default.
- W2946061185 cites W2353552327 @default.
- W2946061185 cites W2397499320 @default.
- W2946061185 cites W2514219775 @default.
- W2946061185 cites W2516668738 @default.
- W2946061185 cites W2603483181 @default.
- W2946061185 cites W2728369305 @default.
- W2946061185 cites W2735556755 @default.
- W2946061185 cites W2738765305 @default.
- W2946061185 cites W2792178736 @default.
- W2946061185 cites W2799695199 @default.
- W2946061185 cites W34678172 @default.
- W2946061185 doi "https://doi.org/10.1016/j.jval.2019.01.011" @default.
- W2946061185 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31104738" @default.
- W2946061185 hasPublicationYear "2019" @default.
- W2946061185 type Work @default.
- W2946061185 sameAs 2946061185 @default.
- W2946061185 citedByCount "31" @default.
- W2946061185 countsByYear W29460611852019 @default.
- W2946061185 countsByYear W29460611852020 @default.
- W2946061185 countsByYear W29460611852021 @default.
- W2946061185 countsByYear W29460611852022 @default.
- W2946061185 countsByYear W29460611852023 @default.
- W2946061185 crossrefType "journal-article" @default.
- W2946061185 hasAuthorship W2946061185A5005037336 @default.
- W2946061185 hasAuthorship W2946061185A5018579603 @default.
- W2946061185 hasAuthorship W2946061185A5031506291 @default.
- W2946061185 hasAuthorship W2946061185A5035831173 @default.
- W2946061185 hasAuthorship W2946061185A5067868620 @default.
- W2946061185 hasAuthorship W2946061185A5087364145 @default.
- W2946061185 hasBestOaLocation W29460611851 @default.
- W2946061185 hasConcept C105795698 @default.
- W2946061185 hasConcept C119857082 @default.
- W2946061185 hasConcept C126322002 @default.
- W2946061185 hasConcept C144024400 @default.
- W2946061185 hasConcept C149923435 @default.
- W2946061185 hasConcept C151956035 @default.
- W2946061185 hasConcept C2780084366 @default.
- W2946061185 hasConcept C33923547 @default.
- W2946061185 hasConcept C41008148 @default.
- W2946061185 hasConcept C71924100 @default.
- W2946061185 hasConceptScore W2946061185C105795698 @default.
- W2946061185 hasConceptScore W2946061185C119857082 @default.
- W2946061185 hasConceptScore W2946061185C126322002 @default.
- W2946061185 hasConceptScore W2946061185C144024400 @default.
- W2946061185 hasConceptScore W2946061185C149923435 @default.
- W2946061185 hasConceptScore W2946061185C151956035 @default.
- W2946061185 hasConceptScore W2946061185C2780084366 @default.
- W2946061185 hasConceptScore W2946061185C33923547 @default.
- W2946061185 hasConceptScore W2946061185C41008148 @default.
- W2946061185 hasConceptScore W2946061185C71924100 @default.
- W2946061185 hasFunder F4320332194 @default.
- W2946061185 hasIssue "5" @default.
- W2946061185 hasLocation W29460611851 @default.
- W2946061185 hasLocation W29460611852 @default.
- W2946061185 hasOpenAccess W2946061185 @default.
- W2946061185 hasPrimaryLocation W29460611851 @default.
- W2946061185 hasRelatedWork W2037668591 @default.
- W2946061185 hasRelatedWork W2106404923 @default.
- W2946061185 hasRelatedWork W2119158312 @default.
- W2946061185 hasRelatedWork W2347937125 @default.
- W2946061185 hasRelatedWork W2389709268 @default.
- W2946061185 hasRelatedWork W2552050053 @default.
- W2946061185 hasRelatedWork W2748952813 @default.
- W2946061185 hasRelatedWork W2899084033 @default.
- W2946061185 hasRelatedWork W4311068385 @default.
- W2946061185 hasRelatedWork W4384828018 @default.
- W2946061185 hasVolume "22" @default.
- W2946061185 isParatext "false" @default.
- W2946061185 isRetracted "false" @default.
- W2946061185 magId "2946061185" @default.
- W2946061185 workType "article" @default.