Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946068081> ?p ?o ?g. }
- W2946068081 abstract "In the past few decades, there has been rapid growth in quantity and variety of healthcare data. These large sets of data are usually high dimensional (e.g. patients, their diagnoses, and medications to treat their diagnoses) and cannot be adequately represented as matrices. Thus, many existing algorithms can not analyze them. To accommodate these high dimensional data, tensor factorization, which can be viewed as a higher-order extension of methods like PCA, has attracted much attention and emerged as a promising solution. However, tensor factorization is a computationally expensive task, and existing methods developed to factor large tensors are not flexible enough for real-world situations. To address this scaling problem more efficiently, we introduce SGranite, a distributed, scalable, and sparse tensor factorization method fit through stochastic gradient descent. SGranite offers three contributions: (1) Scalability: it employs a block partitioning and parallel processing design and thus scales to large tensors, (2) Accuracy: we show that our method can achieve results faster without sacrificing the quality of the tensor decomposition, and (3) FlexibleConstraints: we show our approach can encompass various kinds of constraints including l2 norm, l1 norm, and logistic regularization. We demonstrate SGranite's capabilities in two real-world use cases. In the first, we use Google searches for flu-like symptoms to characterize and predict influenza patterns. In the second, we use SGranite to extract clinically interesting sets (i.e., phenotypes) of patients from electronic health records. Through these case studies, we show SGranite has the potential to be used to rapidly characterize, predict, and manage a large multimodal datasets, thereby promising a novel, data-driven solution that can benefit very large segments of the population." @default.
- W2946068081 created "2019-05-29" @default.
- W2946068081 creator A5013043483 @default.
- W2946068081 creator A5022272635 @default.
- W2946068081 creator A5058220738 @default.
- W2946068081 date "2019-05-13" @default.
- W2946068081 modified "2023-10-13" @default.
- W2946068081 title "Distributed Tensor Decomposition for Large Scale Health Analytics" @default.
- W2946068081 cites W1071368427 @default.
- W2946068081 cites W1552071134 @default.
- W2946068081 cites W1605847626 @default.
- W2946068081 cites W1686435617 @default.
- W2946068081 cites W1969116741 @default.
- W2946068081 cites W1976801265 @default.
- W2946068081 cites W1980147176 @default.
- W2946068081 cites W2000215628 @default.
- W2946068081 cites W2010549227 @default.
- W2946068081 cites W2024165284 @default.
- W2946068081 cites W2024356620 @default.
- W2946068081 cites W2071729267 @default.
- W2946068081 cites W2080321187 @default.
- W2946068081 cites W2117239687 @default.
- W2946068081 cites W2122825543 @default.
- W2946068081 cites W2131668595 @default.
- W2946068081 cites W2151932005 @default.
- W2946068081 cites W2220516362 @default.
- W2946068081 cites W2396881363 @default.
- W2946068081 cites W2469230926 @default.
- W2946068081 cites W2542459869 @default.
- W2946068081 cites W2565507433 @default.
- W2946068081 cites W2594685110 @default.
- W2946068081 cites W2606065148 @default.
- W2946068081 cites W2606929478 @default.
- W2946068081 cites W2613571630 @default.
- W2946068081 cites W2774894600 @default.
- W2946068081 cites W2786858191 @default.
- W2946068081 cites W2795272597 @default.
- W2946068081 cites W2944321613 @default.
- W2946068081 cites W2963999633 @default.
- W2946068081 cites W2964343053 @default.
- W2946068081 cites W4244393449 @default.
- W2946068081 cites W4252875628 @default.
- W2946068081 doi "https://doi.org/10.1145/3308558.3313548" @default.
- W2946068081 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6563812" @default.
- W2946068081 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31198910" @default.
- W2946068081 hasPublicationYear "2019" @default.
- W2946068081 type Work @default.
- W2946068081 sameAs 2946068081 @default.
- W2946068081 citedByCount "11" @default.
- W2946068081 countsByYear W29460680812020 @default.
- W2946068081 countsByYear W29460680812021 @default.
- W2946068081 countsByYear W29460680812022 @default.
- W2946068081 countsByYear W29460680812023 @default.
- W2946068081 crossrefType "proceedings-article" @default.
- W2946068081 hasAuthorship W2946068081A5013043483 @default.
- W2946068081 hasAuthorship W2946068081A5022272635 @default.
- W2946068081 hasAuthorship W2946068081A5058220738 @default.
- W2946068081 hasBestOaLocation W29460680812 @default.
- W2946068081 hasConcept C11413529 @default.
- W2946068081 hasConcept C121332964 @default.
- W2946068081 hasConcept C124101348 @default.
- W2946068081 hasConcept C142724271 @default.
- W2946068081 hasConcept C154945302 @default.
- W2946068081 hasConcept C155281189 @default.
- W2946068081 hasConcept C158693339 @default.
- W2946068081 hasConcept C187834632 @default.
- W2946068081 hasConcept C202444582 @default.
- W2946068081 hasConcept C2776135515 @default.
- W2946068081 hasConcept C33923547 @default.
- W2946068081 hasConcept C41008148 @default.
- W2946068081 hasConcept C42355184 @default.
- W2946068081 hasConcept C48044578 @default.
- W2946068081 hasConcept C534262118 @default.
- W2946068081 hasConcept C62520636 @default.
- W2946068081 hasConcept C71924100 @default.
- W2946068081 hasConcept C75684735 @default.
- W2946068081 hasConcept C77088390 @default.
- W2946068081 hasConcept C80444323 @default.
- W2946068081 hasConceptScore W2946068081C11413529 @default.
- W2946068081 hasConceptScore W2946068081C121332964 @default.
- W2946068081 hasConceptScore W2946068081C124101348 @default.
- W2946068081 hasConceptScore W2946068081C142724271 @default.
- W2946068081 hasConceptScore W2946068081C154945302 @default.
- W2946068081 hasConceptScore W2946068081C155281189 @default.
- W2946068081 hasConceptScore W2946068081C158693339 @default.
- W2946068081 hasConceptScore W2946068081C187834632 @default.
- W2946068081 hasConceptScore W2946068081C202444582 @default.
- W2946068081 hasConceptScore W2946068081C2776135515 @default.
- W2946068081 hasConceptScore W2946068081C33923547 @default.
- W2946068081 hasConceptScore W2946068081C41008148 @default.
- W2946068081 hasConceptScore W2946068081C42355184 @default.
- W2946068081 hasConceptScore W2946068081C48044578 @default.
- W2946068081 hasConceptScore W2946068081C534262118 @default.
- W2946068081 hasConceptScore W2946068081C62520636 @default.
- W2946068081 hasConceptScore W2946068081C71924100 @default.
- W2946068081 hasConceptScore W2946068081C75684735 @default.
- W2946068081 hasConceptScore W2946068081C77088390 @default.
- W2946068081 hasConceptScore W2946068081C80444323 @default.
- W2946068081 hasLocation W29460680811 @default.
- W2946068081 hasLocation W29460680812 @default.