Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946093721> ?p ?o ?g. }
- W2946093721 endingPage "8094" @default.
- W2946093721 startingPage "8079" @default.
- W2946093721 abstract "Human activity detection outdoors is emerging as a very important research field due to its potential application in surveillance, assisted living, search and rescue, and military applications. For such applications it is important to have detailed information about the human target, for example, whether the detected target is a single person or a group of people, what activity a target is performing, and the rough location of the target. In this paper, we propose novel usage of machine learning techniques to perform subject classification, human activity classification, people counting, and coarse localization by classifying micro-Doppler signatures obtained from a low-cost and low-power radar system. Our experiments were performed outdoors. For feature extraction of micro-Doppler signatures, we applied a two-directional two-dimensional principle component analysis (2D2PCA). Our results show that by applying 2D2PCA, the accuracy results of support vector machine (SVM) and k-nearest neighbors (kNN) classifiers were greatly improved. We also designed and implemented a Convolutional Neural Network (CNN) for the target classifications in terms of type, number, activity, and coarse localization. Our CNN model obtained very high classification accuracies (97% to 100%), which are superior to the best results obtained by SVM and kNN. Finally, we investigated the effects of the frame length of the sliding window, the angle of the direction of movement, and the number of radars used on the classification performance, providing valuable guidelines for machine learning modeling and experimental setup of micro-Doppler based research and applications." @default.
- W2946093721 created "2019-05-29" @default.
- W2946093721 creator A5018639589 @default.
- W2946093721 creator A5031554813 @default.
- W2946093721 creator A5083232291 @default.
- W2946093721 date "2019-09-15" @default.
- W2946093721 modified "2023-10-03" @default.
- W2946093721 title "Human Activity Detection and Coarse Localization Outdoors Using Micro-Doppler Signatures" @default.
- W2946093721 cites W1541521713 @default.
- W2946093721 cites W1560002189 @default.
- W2946093721 cites W1974840117 @default.
- W2946093721 cites W1986565122 @default.
- W2946093721 cites W2007553521 @default.
- W2946093721 cites W2043415540 @default.
- W2946093721 cites W2043430068 @default.
- W2946093721 cites W2061650437 @default.
- W2946093721 cites W2075122089 @default.
- W2946093721 cites W2088252378 @default.
- W2946093721 cites W2127600934 @default.
- W2946093721 cites W2132083787 @default.
- W2946093721 cites W2149711710 @default.
- W2946093721 cites W2157770256 @default.
- W2946093721 cites W2164018496 @default.
- W2946093721 cites W2165913693 @default.
- W2946093721 cites W2207110500 @default.
- W2946093721 cites W2242223225 @default.
- W2946093721 cites W2249376573 @default.
- W2946093721 cites W2261451947 @default.
- W2946093721 cites W2267102119 @default.
- W2946093721 cites W2269154993 @default.
- W2946093721 cites W2320847335 @default.
- W2946093721 cites W2344636067 @default.
- W2946093721 cites W2746870488 @default.
- W2946093721 cites W2887770386 @default.
- W2946093721 cites W3100561351 @default.
- W2946093721 cites W4245685877 @default.
- W2946093721 cites W64392663 @default.
- W2946093721 doi "https://doi.org/10.1109/jsen.2019.2917375" @default.
- W2946093721 hasPublicationYear "2019" @default.
- W2946093721 type Work @default.
- W2946093721 sameAs 2946093721 @default.
- W2946093721 citedByCount "40" @default.
- W2946093721 countsByYear W29460937212019 @default.
- W2946093721 countsByYear W29460937212020 @default.
- W2946093721 countsByYear W29460937212021 @default.
- W2946093721 countsByYear W29460937212022 @default.
- W2946093721 countsByYear W29460937212023 @default.
- W2946093721 crossrefType "journal-article" @default.
- W2946093721 hasAuthorship W2946093721A5018639589 @default.
- W2946093721 hasAuthorship W2946093721A5031554813 @default.
- W2946093721 hasAuthorship W2946093721A5083232291 @default.
- W2946093721 hasBestOaLocation W29460937212 @default.
- W2946093721 hasConcept C102392041 @default.
- W2946093721 hasConcept C111919701 @default.
- W2946093721 hasConcept C119857082 @default.
- W2946093721 hasConcept C12267149 @default.
- W2946093721 hasConcept C126042441 @default.
- W2946093721 hasConcept C138885662 @default.
- W2946093721 hasConcept C153180895 @default.
- W2946093721 hasConcept C154945302 @default.
- W2946093721 hasConcept C202444582 @default.
- W2946093721 hasConcept C2776401178 @default.
- W2946093721 hasConcept C2778751112 @default.
- W2946093721 hasConcept C31972630 @default.
- W2946093721 hasConcept C33923547 @default.
- W2946093721 hasConcept C41008148 @default.
- W2946093721 hasConcept C41895202 @default.
- W2946093721 hasConcept C52622490 @default.
- W2946093721 hasConcept C76155785 @default.
- W2946093721 hasConcept C81363708 @default.
- W2946093721 hasConcept C9652623 @default.
- W2946093721 hasConceptScore W2946093721C102392041 @default.
- W2946093721 hasConceptScore W2946093721C111919701 @default.
- W2946093721 hasConceptScore W2946093721C119857082 @default.
- W2946093721 hasConceptScore W2946093721C12267149 @default.
- W2946093721 hasConceptScore W2946093721C126042441 @default.
- W2946093721 hasConceptScore W2946093721C138885662 @default.
- W2946093721 hasConceptScore W2946093721C153180895 @default.
- W2946093721 hasConceptScore W2946093721C154945302 @default.
- W2946093721 hasConceptScore W2946093721C202444582 @default.
- W2946093721 hasConceptScore W2946093721C2776401178 @default.
- W2946093721 hasConceptScore W2946093721C2778751112 @default.
- W2946093721 hasConceptScore W2946093721C31972630 @default.
- W2946093721 hasConceptScore W2946093721C33923547 @default.
- W2946093721 hasConceptScore W2946093721C41008148 @default.
- W2946093721 hasConceptScore W2946093721C41895202 @default.
- W2946093721 hasConceptScore W2946093721C52622490 @default.
- W2946093721 hasConceptScore W2946093721C76155785 @default.
- W2946093721 hasConceptScore W2946093721C81363708 @default.
- W2946093721 hasConceptScore W2946093721C9652623 @default.
- W2946093721 hasFunder F4320320335 @default.
- W2946093721 hasFunder F4320322725 @default.
- W2946093721 hasIssue "18" @default.
- W2946093721 hasLocation W29460937211 @default.
- W2946093721 hasLocation W29460937212 @default.
- W2946093721 hasOpenAccess W2946093721 @default.
- W2946093721 hasPrimaryLocation W29460937211 @default.
- W2946093721 hasRelatedWork W2059299633 @default.