Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946117866> ?p ?o ?g. }
- W2946117866 abstract "Learning effective embedding has been proved to be useful in many real-world problems, such as recommender systems, search ranking and online advertisement. However, one of the challenges is data sparsity in learning large-scale item embedding, as users' historical behavior data are usually lacking or insufficient in an individual domain. In fact, user's behaviors from different domains regarding the same items are usually relevant. Therefore, we can learn complete user behaviors to alleviate the sparsity using complementary information from correlated domains. It is intuitive to model users' behaviors using graph, and graph neural networks (GNNs) have recently shown the great power for representation learning, which can be used to learn item embedding. However, it is challenging to transfer the information across domains and learn cross-domain representation using the existing GNNs. To address these challenges, in this paper, we propose a novel model - Deep Multi-Graph Embedding (DMGE) to learn cross-domain representation. Specifically, we first construct a multi-graph based on users' behaviors from different domains, and then propose a multi-graph neural network to learn cross-domain representation in an unsupervised manner. Particularly, we present a multiple-gradient descent optimizer for efficiently training the model. We evaluate our approach on various large-scale real-world datasets, and the experimental results show that DMGE outperforms other state-of-art embedding methods in various tasks." @default.
- W2946117866 created "2019-05-29" @default.
- W2946117866 creator A5008484190 @default.
- W2946117866 creator A5013113719 @default.
- W2946117866 creator A5049531727 @default.
- W2946117866 creator A5071989106 @default.
- W2946117866 creator A5075054211 @default.
- W2946117866 creator A5083350101 @default.
- W2946117866 date "2019-05-24" @default.
- W2946117866 modified "2023-09-23" @default.
- W2946117866 title "Learning Cross-Domain Representation with Multi-Graph Neural Network." @default.
- W2946117866 cites W1614298861 @default.
- W2946117866 cites W2054141820 @default.
- W2946117866 cites W2060727197 @default.
- W2946117866 cites W2136885855 @default.
- W2946117866 cites W2153579005 @default.
- W2946117866 cites W2163922914 @default.
- W2946117866 cites W2475334473 @default.
- W2946117866 cites W2512971201 @default.
- W2946117866 cites W2519887557 @default.
- W2946117866 cites W2604662567 @default.
- W2946117866 cites W2613870276 @default.
- W2946117866 cites W2624431344 @default.
- W2946117866 cites W2624871570 @default.
- W2946117866 cites W2740605635 @default.
- W2946117866 cites W2742272831 @default.
- W2946117866 cites W2798766386 @default.
- W2946117866 cites W2803718882 @default.
- W2946117866 cites W2808787330 @default.
- W2946117866 cites W2897432887 @default.
- W2946117866 cites W2905224888 @default.
- W2946117866 cites W2907206525 @default.
- W2946117866 cites W2913340405 @default.
- W2946117866 cites W2962711740 @default.
- W2946117866 cites W2962756421 @default.
- W2946117866 cites W2962767366 @default.
- W2946117866 cites W2962975498 @default.
- W2946117866 cites W2963460103 @default.
- W2946117866 cites W2963601856 @default.
- W2946117866 cites W2963858333 @default.
- W2946117866 cites W2964051675 @default.
- W2946117866 cites W2964311892 @default.
- W2946117866 cites W2964316331 @default.
- W2946117866 cites W2982327501 @default.
- W2946117866 cites W3100848837 @default.
- W2946117866 cites W3104097132 @default.
- W2946117866 cites W905619 @default.
- W2946117866 hasPublicationYear "2019" @default.
- W2946117866 type Work @default.
- W2946117866 sameAs 2946117866 @default.
- W2946117866 citedByCount "1" @default.
- W2946117866 countsByYear W29461178662020 @default.
- W2946117866 crossrefType "posted-content" @default.
- W2946117866 hasAuthorship W2946117866A5008484190 @default.
- W2946117866 hasAuthorship W2946117866A5013113719 @default.
- W2946117866 hasAuthorship W2946117866A5049531727 @default.
- W2946117866 hasAuthorship W2946117866A5071989106 @default.
- W2946117866 hasAuthorship W2946117866A5075054211 @default.
- W2946117866 hasAuthorship W2946117866A5083350101 @default.
- W2946117866 hasConcept C119857082 @default.
- W2946117866 hasConcept C132525143 @default.
- W2946117866 hasConcept C134306372 @default.
- W2946117866 hasConcept C154945302 @default.
- W2946117866 hasConcept C17744445 @default.
- W2946117866 hasConcept C199539241 @default.
- W2946117866 hasConcept C2776359362 @default.
- W2946117866 hasConcept C33923547 @default.
- W2946117866 hasConcept C36503486 @default.
- W2946117866 hasConcept C41008148 @default.
- W2946117866 hasConcept C41608201 @default.
- W2946117866 hasConcept C557471498 @default.
- W2946117866 hasConcept C59404180 @default.
- W2946117866 hasConcept C75564084 @default.
- W2946117866 hasConcept C80444323 @default.
- W2946117866 hasConcept C94625758 @default.
- W2946117866 hasConceptScore W2946117866C119857082 @default.
- W2946117866 hasConceptScore W2946117866C132525143 @default.
- W2946117866 hasConceptScore W2946117866C134306372 @default.
- W2946117866 hasConceptScore W2946117866C154945302 @default.
- W2946117866 hasConceptScore W2946117866C17744445 @default.
- W2946117866 hasConceptScore W2946117866C199539241 @default.
- W2946117866 hasConceptScore W2946117866C2776359362 @default.
- W2946117866 hasConceptScore W2946117866C33923547 @default.
- W2946117866 hasConceptScore W2946117866C36503486 @default.
- W2946117866 hasConceptScore W2946117866C41008148 @default.
- W2946117866 hasConceptScore W2946117866C41608201 @default.
- W2946117866 hasConceptScore W2946117866C557471498 @default.
- W2946117866 hasConceptScore W2946117866C59404180 @default.
- W2946117866 hasConceptScore W2946117866C75564084 @default.
- W2946117866 hasConceptScore W2946117866C80444323 @default.
- W2946117866 hasConceptScore W2946117866C94625758 @default.
- W2946117866 hasLocation W29461178661 @default.
- W2946117866 hasOpenAccess W2946117866 @default.
- W2946117866 hasPrimaryLocation W29461178661 @default.
- W2946117866 hasRelatedWork W2530194295 @default.
- W2946117866 hasRelatedWork W2550241572 @default.
- W2946117866 hasRelatedWork W2604545383 @default.
- W2946117866 hasRelatedWork W2791949368 @default.
- W2946117866 hasRelatedWork W2942259124 @default.
- W2946117866 hasRelatedWork W2953243284 @default.