Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946141567> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2946141567 endingPage "102844" @default.
- W2946141567 startingPage "102844" @default.
- W2946141567 abstract "Abstract In this study, a quasi-autonomous vision-based method is newly proposed for detecting loosened bolts in critical connections. The main idea of the approach is to estimate the rotational angles of bolts from the connection images by integrating deep learning technology with image processing techniques. Firstly, a regional convolutional neural network (RCNN)-based deep learning algorithm is developed to automatically detect and crop plausible bolts in the connection image. Also, the Hough line transform (HLT)-based image processing algorithm is designed to automatically estimate the bolt angles from the cropped bolt images. Secondly, the proposed vision-based approach is validated for bolt-loosening detection in a lab-scale girder connection using images captured by a smartphone camera. The accuracy of the RCNN-based bolt detector and the HLT-based bolt angle estimator are examined under different levels of perspective distortion and shooting distance. Finally, the practicality of the proposed vision-based method is verified on a real-scale girder bridge connection containing numerous bolts. The images of the connection are captured by an unmanned aerial vehicle and transferred to a computer where a quasi-autonomous bolt-loosening detection process is performed via the proposed algorithm. The experimental results demonstrate potentials of the proposed approach for quasi real-time bolt-loosening monitoring of large bolted connections. The results show that the perspective angle should not go beyond 40 degrees to ensure the accuracy of the detection results." @default.
- W2946141567 created "2019-05-29" @default.
- W2946141567 creator A5016772255 @default.
- W2946141567 creator A5028371557 @default.
- W2946141567 creator A5038550525 @default.
- W2946141567 creator A5074092342 @default.
- W2946141567 date "2019-09-01" @default.
- W2946141567 modified "2023-10-16" @default.
- W2946141567 title "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing" @default.
- W2946141567 cites W1970392706 @default.
- W2946141567 cites W1987526783 @default.
- W2946141567 cites W1999478155 @default.
- W2946141567 cites W2088049833 @default.
- W2946141567 cites W2126052502 @default.
- W2946141567 cites W2145023731 @default.
- W2946141567 cites W2155510173 @default.
- W2946141567 cites W2228758642 @default.
- W2946141567 cites W2332885174 @default.
- W2946141567 cites W2395579298 @default.
- W2946141567 cites W2404692435 @default.
- W2946141567 cites W2478677992 @default.
- W2946141567 cites W2598457882 @default.
- W2946141567 cites W2756789966 @default.
- W2946141567 cites W2762547638 @default.
- W2946141567 cites W2768955070 @default.
- W2946141567 cites W2779497038 @default.
- W2946141567 cites W2794433482 @default.
- W2946141567 cites W2794841368 @default.
- W2946141567 cites W2807903967 @default.
- W2946141567 cites W2888179871 @default.
- W2946141567 cites W2901906265 @default.
- W2946141567 cites W2905127877 @default.
- W2946141567 cites W2962949934 @default.
- W2946141567 cites W5340309 @default.
- W2946141567 doi "https://doi.org/10.1016/j.autcon.2019.102844" @default.
- W2946141567 hasPublicationYear "2019" @default.
- W2946141567 type Work @default.
- W2946141567 sameAs 2946141567 @default.
- W2946141567 citedByCount "94" @default.
- W2946141567 countsByYear W29461415672019 @default.
- W2946141567 countsByYear W29461415672020 @default.
- W2946141567 countsByYear W29461415672021 @default.
- W2946141567 countsByYear W29461415672022 @default.
- W2946141567 countsByYear W29461415672023 @default.
- W2946141567 crossrefType "journal-article" @default.
- W2946141567 hasAuthorship W2946141567A5016772255 @default.
- W2946141567 hasAuthorship W2946141567A5028371557 @default.
- W2946141567 hasAuthorship W2946141567A5038550525 @default.
- W2946141567 hasAuthorship W2946141567A5074092342 @default.
- W2946141567 hasConcept C108583219 @default.
- W2946141567 hasConcept C115961682 @default.
- W2946141567 hasConcept C121684516 @default.
- W2946141567 hasConcept C127413603 @default.
- W2946141567 hasConcept C154945302 @default.
- W2946141567 hasConcept C31972630 @default.
- W2946141567 hasConcept C41008148 @default.
- W2946141567 hasConcept C5339829 @default.
- W2946141567 hasConcept C9417928 @default.
- W2946141567 hasConceptScore W2946141567C108583219 @default.
- W2946141567 hasConceptScore W2946141567C115961682 @default.
- W2946141567 hasConceptScore W2946141567C121684516 @default.
- W2946141567 hasConceptScore W2946141567C127413603 @default.
- W2946141567 hasConceptScore W2946141567C154945302 @default.
- W2946141567 hasConceptScore W2946141567C31972630 @default.
- W2946141567 hasConceptScore W2946141567C41008148 @default.
- W2946141567 hasConceptScore W2946141567C5339829 @default.
- W2946141567 hasConceptScore W2946141567C9417928 @default.
- W2946141567 hasFunder F4320322010 @default.
- W2946141567 hasLocation W29461415671 @default.
- W2946141567 hasOpenAccess W2946141567 @default.
- W2946141567 hasPrimaryLocation W29461415671 @default.
- W2946141567 hasRelatedWork W1671651577 @default.
- W2946141567 hasRelatedWork W2066436935 @default.
- W2946141567 hasRelatedWork W2080322084 @default.
- W2946141567 hasRelatedWork W23451984 @default.
- W2946141567 hasRelatedWork W2394038673 @default.
- W2946141567 hasRelatedWork W2535947535 @default.
- W2946141567 hasRelatedWork W3129181224 @default.
- W2946141567 hasRelatedWork W3216143833 @default.
- W2946141567 hasRelatedWork W2507763083 @default.
- W2946141567 hasRelatedWork W2612881747 @default.
- W2946141567 hasVolume "105" @default.
- W2946141567 isParatext "false" @default.
- W2946141567 isRetracted "false" @default.
- W2946141567 magId "2946141567" @default.
- W2946141567 workType "article" @default.