Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946167144> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2946167144 abstract "Mobile crowdsensing (MCS) is a new and promising tool in urban sensing. It exploits a crowd of smartphone-carried mobile users and transfers their sensory data to requesters who usually publish spatio-temporal tasks of sensing city area. In reality, mobile users can probabilistically move in the sensing region in their daily mobility and stay there for a period of time; and then these probabilistic users can be recruited to collaboratively perform MCS sensing tasks. Such an MCS depending on the probabilistic collaboration of mobile users is usually called nondeterministic MCS. In this paper, we focus on the budget-feasible user recruitment (BFUR) problem in non-deterministic MCS, which is the first work to maximize the requester's utility under a given budget constraint. Because of the NP-hardness of BFUR, we reformulate it as a monotone submodular maximization problem and propose a greedy algorithm (called uMax) with provable constant-factor competitiveness. Unlike previous works for nondeterministic MCS, however, this paper specially puts effort on predicting the mobility patterns of users, especially their stay time in requester's sensing region, and then designs an effective predictor based on bi-directional long short-term memory neural network. Such a prediction of user's stay time not only connects the BFUR problem modeling defined in this paper and the actual mobility uncertainty of users, but also can apply to any nondeterministic MCS campaign that depends on the knowledge of user's stay patterns. We finally validate the performance of the proposed predictor under a real-world dataset of wireless mobile networks, and evaluate algorithm uMax by comparing it with two other baseline algorithms." @default.
- W2946167144 created "2019-05-29" @default.
- W2946167144 creator A5008995969 @default.
- W2946167144 creator A5021789231 @default.
- W2946167144 creator A5067442566 @default.
- W2946167144 creator A5075503065 @default.
- W2946167144 date "2018-11-01" @default.
- W2946167144 modified "2023-09-24" @default.
- W2946167144 title "Budget-feasible User Recruitment in Mobile Crowdsensing with User Mobility Prediction" @default.
- W2946167144 cites W1525809409 @default.
- W2946167144 cites W183625566 @default.
- W2946167144 cites W1973058638 @default.
- W2946167144 cites W1985195893 @default.
- W2946167144 cites W1994273294 @default.
- W2946167144 cites W1994459959 @default.
- W2946167144 cites W1999381556 @default.
- W2946167144 cites W2002169759 @default.
- W2946167144 cites W2005708641 @default.
- W2946167144 cites W2006974280 @default.
- W2946167144 cites W2026338082 @default.
- W2946167144 cites W2033885045 @default.
- W2946167144 cites W2036686581 @default.
- W2946167144 cites W2080379754 @default.
- W2946167144 cites W2088941300 @default.
- W2946167144 cites W2110953678 @default.
- W2946167144 cites W2127141656 @default.
- W2946167144 cites W2133286823 @default.
- W2946167144 cites W2148087540 @default.
- W2946167144 cites W2152204876 @default.
- W2946167144 cites W2169357320 @default.
- W2946167144 cites W2234206629 @default.
- W2946167144 cites W2248864398 @default.
- W2946167144 cites W2286366981 @default.
- W2946167144 cites W2290905834 @default.
- W2946167144 cites W2473536663 @default.
- W2946167144 cites W2517972157 @default.
- W2946167144 cites W2562042036 @default.
- W2946167144 cites W2562814954 @default.
- W2946167144 cites W2579477926 @default.
- W2946167144 cites W2588075546 @default.
- W2946167144 cites W2594644857 @default.
- W2946167144 cites W2783092754 @default.
- W2946167144 cites W4291745967 @default.
- W2946167144 cites W984525108 @default.
- W2946167144 doi "https://doi.org/10.1109/pccc.2018.8711341" @default.
- W2946167144 hasPublicationYear "2018" @default.
- W2946167144 type Work @default.
- W2946167144 sameAs 2946167144 @default.
- W2946167144 citedByCount "5" @default.
- W2946167144 countsByYear W29461671442021 @default.
- W2946167144 countsByYear W29461671442022 @default.
- W2946167144 crossrefType "proceedings-article" @default.
- W2946167144 hasAuthorship W2946167144A5008995969 @default.
- W2946167144 hasAuthorship W2946167144A5021789231 @default.
- W2946167144 hasAuthorship W2946167144A5067442566 @default.
- W2946167144 hasAuthorship W2946167144A5075503065 @default.
- W2946167144 hasConcept C107457646 @default.
- W2946167144 hasConcept C2780821482 @default.
- W2946167144 hasConcept C38652104 @default.
- W2946167144 hasConcept C41008148 @default.
- W2946167144 hasConceptScore W2946167144C107457646 @default.
- W2946167144 hasConceptScore W2946167144C2780821482 @default.
- W2946167144 hasConceptScore W2946167144C38652104 @default.
- W2946167144 hasConceptScore W2946167144C41008148 @default.
- W2946167144 hasLocation W29461671441 @default.
- W2946167144 hasOpenAccess W2946167144 @default.
- W2946167144 hasPrimaryLocation W29461671441 @default.
- W2946167144 hasRelatedWork W2045456578 @default.
- W2946167144 hasRelatedWork W2076610045 @default.
- W2946167144 hasRelatedWork W2918883224 @default.
- W2946167144 hasRelatedWork W2921179853 @default.
- W2946167144 hasRelatedWork W2943929564 @default.
- W2946167144 hasRelatedWork W2951885176 @default.
- W2946167144 hasRelatedWork W3015853966 @default.
- W2946167144 hasRelatedWork W3141632679 @default.
- W2946167144 hasRelatedWork W3200098344 @default.
- W2946167144 hasRelatedWork W3212211558 @default.
- W2946167144 isParatext "false" @default.
- W2946167144 isRetracted "false" @default.
- W2946167144 magId "2946167144" @default.
- W2946167144 workType "article" @default.