Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946297791> ?p ?o ?g. }
- W2946297791 endingPage "88" @default.
- W2946297791 startingPage "81" @default.
- W2946297791 abstract "Clathrin is an adaptor protein that serves as the principal element of the vesicle-coating complex and is important for the membrane cleavage to dispense the invaginated vesicle from the plasma membrane. The functional loss of clathrins has been tied to a lot of human diseases, i.e., neurodegenerative disorders, cancer, Alzheimer's diseases, and so on. Therefore, creating a precise model to identify its functions is a crucial step towards understanding human diseases and designing drug targets. We present a deep learning model using a two-dimensional convolutional neural network (CNN) and position-specific scoring matrix (PSSM) profiles to identify clathrin proteins from high throughput sequences. Traditionally, the 2D CNNs take images as an input so we treated the PSSM profile with a 20 × 20 matrix as an image of 20 × 20 pixels. The input PSSM profile was then connected to our 2D CNN in which we set a variety of parameters to improve the performance of the model. Based on the 10-fold cross-validation results, hyper-parameter optimization process was employed to find the best model for our dataset. Finally, an independent dataset was used to assess the predictive ability of the current model. Our model could identify clathrin proteins with sensitivity of 92.2%, specificity of 91.2%, accuracy of 91.8%, and MCC of 0.83 in the independent dataset. Compared to state-of-the-art traditional neural networks, our method achieved a significant improvement in all typical measurement metrics. Throughout the proposed study, we provide an effective tool for investigating clathrin proteins and our achievement could promote the use of deep learning in biomedical research. We also provide source codes and dataset freely at https://www.github.com/khanhlee/deep-clathrin/." @default.
- W2946297791 created "2019-05-29" @default.
- W2946297791 creator A5060885283 @default.
- W2946297791 creator A5066420667 @default.
- W2946297791 creator A5067257724 @default.
- W2946297791 creator A5078080255 @default.
- W2946297791 date "2019-08-01" @default.
- W2946297791 modified "2023-10-17" @default.
- W2946297791 title "Identification of clathrin proteins by incorporating hyperparameter optimization in deep learning and PSSM profiles" @default.
- W2946297791 cites W1779624089 @default.
- W2946297791 cites W1970295512 @default.
- W2946297791 cites W1974703894 @default.
- W2946297791 cites W1978274366 @default.
- W2946297791 cites W1978443926 @default.
- W2946297791 cites W1981253524 @default.
- W2946297791 cites W1988195734 @default.
- W2946297791 cites W2003252419 @default.
- W2946297791 cites W2009596458 @default.
- W2946297791 cites W2013327543 @default.
- W2946297791 cites W2026255481 @default.
- W2946297791 cites W2035334446 @default.
- W2946297791 cites W2040895929 @default.
- W2946297791 cites W2052877842 @default.
- W2946297791 cites W2081119171 @default.
- W2946297791 cites W2089866954 @default.
- W2946297791 cites W2150398411 @default.
- W2946297791 cites W2153187042 @default.
- W2946297791 cites W2153192086 @default.
- W2946297791 cites W2158508001 @default.
- W2946297791 cites W2158714788 @default.
- W2946297791 cites W2497764970 @default.
- W2946297791 cites W2565752858 @default.
- W2946297791 cites W2651986237 @default.
- W2946297791 cites W2739999456 @default.
- W2946297791 cites W2743148492 @default.
- W2946297791 cites W2755930428 @default.
- W2946297791 cites W2772392741 @default.
- W2946297791 cites W2807929272 @default.
- W2946297791 cites W2895084243 @default.
- W2946297791 cites W2895790402 @default.
- W2946297791 cites W2917557027 @default.
- W2946297791 cites W2923437336 @default.
- W2946297791 cites W2931503046 @default.
- W2946297791 cites W4251386234 @default.
- W2946297791 doi "https://doi.org/10.1016/j.cmpb.2019.05.016" @default.
- W2946297791 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31319963" @default.
- W2946297791 hasPublicationYear "2019" @default.
- W2946297791 type Work @default.
- W2946297791 sameAs 2946297791 @default.
- W2946297791 citedByCount "62" @default.
- W2946297791 countsByYear W29462977912019 @default.
- W2946297791 countsByYear W29462977912020 @default.
- W2946297791 countsByYear W29462977912021 @default.
- W2946297791 countsByYear W29462977912022 @default.
- W2946297791 countsByYear W29462977912023 @default.
- W2946297791 crossrefType "journal-article" @default.
- W2946297791 hasAuthorship W2946297791A5060885283 @default.
- W2946297791 hasAuthorship W2946297791A5066420667 @default.
- W2946297791 hasAuthorship W2946297791A5067257724 @default.
- W2946297791 hasAuthorship W2946297791A5078080255 @default.
- W2946297791 hasBestOaLocation W29462977912 @default.
- W2946297791 hasConcept C108583219 @default.
- W2946297791 hasConcept C119857082 @default.
- W2946297791 hasConcept C130316041 @default.
- W2946297791 hasConcept C153180895 @default.
- W2946297791 hasConcept C154945302 @default.
- W2946297791 hasConcept C41008148 @default.
- W2946297791 hasConcept C41625074 @default.
- W2946297791 hasConcept C50644808 @default.
- W2946297791 hasConcept C54355233 @default.
- W2946297791 hasConcept C63162447 @default.
- W2946297791 hasConcept C70721500 @default.
- W2946297791 hasConcept C81363708 @default.
- W2946297791 hasConcept C8642999 @default.
- W2946297791 hasConcept C86803240 @default.
- W2946297791 hasConceptScore W2946297791C108583219 @default.
- W2946297791 hasConceptScore W2946297791C119857082 @default.
- W2946297791 hasConceptScore W2946297791C130316041 @default.
- W2946297791 hasConceptScore W2946297791C153180895 @default.
- W2946297791 hasConceptScore W2946297791C154945302 @default.
- W2946297791 hasConceptScore W2946297791C41008148 @default.
- W2946297791 hasConceptScore W2946297791C41625074 @default.
- W2946297791 hasConceptScore W2946297791C50644808 @default.
- W2946297791 hasConceptScore W2946297791C54355233 @default.
- W2946297791 hasConceptScore W2946297791C63162447 @default.
- W2946297791 hasConceptScore W2946297791C70721500 @default.
- W2946297791 hasConceptScore W2946297791C81363708 @default.
- W2946297791 hasConceptScore W2946297791C8642999 @default.
- W2946297791 hasConceptScore W2946297791C86803240 @default.
- W2946297791 hasFunder F4320320766 @default.
- W2946297791 hasLocation W29462977911 @default.
- W2946297791 hasLocation W29462977912 @default.
- W2946297791 hasLocation W29462977913 @default.
- W2946297791 hasOpenAccess W2946297791 @default.
- W2946297791 hasPrimaryLocation W29462977911 @default.
- W2946297791 hasRelatedWork W2337926734 @default.
- W2946297791 hasRelatedWork W2732542196 @default.
- W2946297791 hasRelatedWork W2738221750 @default.