Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946320304> ?p ?o ?g. }
- W2946320304 endingPage "116" @default.
- W2946320304 startingPage "99" @default.
- W2946320304 abstract "A new nonparametric supervised algorithm is proposed for detecting multiple communities in complex networks using the Depth vs. Depth (DD(G)) classifier. The key idea behind the new clustering method is the notion of robust and data-driven data depth methodology that still remains new and unexplored in network sciences. The developed new DD(G)-method is inherently geometric and allows to simultaneously account for network communities and outliers. Although the data-based classifier operates within a supervised learning framework, the related nonparametric notion of depth in networks can be used in a more general context, including (semi) supervised and unsupervised learning. Utility of the new approach is illustrated by using the benchmark political blogs data, “dark” terrorist networks, and analysis of bill cosponsorship in the Italian Parliament." @default.
- W2946320304 created "2019-05-29" @default.
- W2946320304 creator A5051209390 @default.
- W2946320304 creator A5058024103 @default.
- W2946320304 date "2019-11-01" @default.
- W2946320304 modified "2023-09-28" @default.
- W2946320304 title "Fusing data depth with complex networks: Community detection with prior information" @default.
- W2946320304 cites W1495929194 @default.
- W2946320304 cites W1531677314 @default.
- W2946320304 cites W1565608089 @default.
- W2946320304 cites W1800780444 @default.
- W2946320304 cites W1930572491 @default.
- W2946320304 cites W1985266218 @default.
- W2946320304 cites W2002877202 @default.
- W2946320304 cites W2014181044 @default.
- W2946320304 cites W2014967532 @default.
- W2946320304 cites W2016440615 @default.
- W2946320304 cites W2019009079 @default.
- W2946320304 cites W2020133295 @default.
- W2946320304 cites W2032005951 @default.
- W2946320304 cites W2045078975 @default.
- W2946320304 cites W2050239729 @default.
- W2946320304 cites W2068096985 @default.
- W2946320304 cites W2079815272 @default.
- W2946320304 cites W2085570173 @default.
- W2946320304 cites W2102907934 @default.
- W2946320304 cites W2111002549 @default.
- W2946320304 cites W2111547480 @default.
- W2946320304 cites W2127048411 @default.
- W2946320304 cites W2128366083 @default.
- W2946320304 cites W2131357767 @default.
- W2946320304 cites W2147620601 @default.
- W2946320304 cites W2152284345 @default.
- W2946320304 cites W2154999648 @default.
- W2946320304 cites W2159030169 @default.
- W2946320304 cites W2214148614 @default.
- W2946320304 cites W2288649731 @default.
- W2946320304 cites W2322209011 @default.
- W2946320304 cites W2346847115 @default.
- W2946320304 cites W2464534118 @default.
- W2946320304 cites W2534725909 @default.
- W2946320304 cites W2791021890 @default.
- W2946320304 cites W2800999593 @default.
- W2946320304 cites W2964259247 @default.
- W2946320304 cites W3100039232 @default.
- W2946320304 cites W3101234112 @default.
- W2946320304 cites W3101538682 @default.
- W2946320304 cites W3101919829 @default.
- W2946320304 cites W3104227803 @default.
- W2946320304 cites W3121682558 @default.
- W2946320304 cites W3123047448 @default.
- W2946320304 doi "https://doi.org/10.1016/j.csda.2019.01.007" @default.
- W2946320304 hasPublicationYear "2019" @default.
- W2946320304 type Work @default.
- W2946320304 sameAs 2946320304 @default.
- W2946320304 citedByCount "8" @default.
- W2946320304 countsByYear W29463203042020 @default.
- W2946320304 countsByYear W29463203042021 @default.
- W2946320304 countsByYear W29463203042022 @default.
- W2946320304 countsByYear W29463203042023 @default.
- W2946320304 crossrefType "journal-article" @default.
- W2946320304 hasAuthorship W2946320304A5051209390 @default.
- W2946320304 hasAuthorship W2946320304A5058024103 @default.
- W2946320304 hasConcept C102366305 @default.
- W2946320304 hasConcept C105795698 @default.
- W2946320304 hasConcept C119857082 @default.
- W2946320304 hasConcept C124101348 @default.
- W2946320304 hasConcept C136389625 @default.
- W2946320304 hasConcept C153180895 @default.
- W2946320304 hasConcept C154945302 @default.
- W2946320304 hasConcept C33923547 @default.
- W2946320304 hasConcept C41008148 @default.
- W2946320304 hasConcept C50644808 @default.
- W2946320304 hasConcept C73555534 @default.
- W2946320304 hasConcept C79337645 @default.
- W2946320304 hasConcept C95623464 @default.
- W2946320304 hasConceptScore W2946320304C102366305 @default.
- W2946320304 hasConceptScore W2946320304C105795698 @default.
- W2946320304 hasConceptScore W2946320304C119857082 @default.
- W2946320304 hasConceptScore W2946320304C124101348 @default.
- W2946320304 hasConceptScore W2946320304C136389625 @default.
- W2946320304 hasConceptScore W2946320304C153180895 @default.
- W2946320304 hasConceptScore W2946320304C154945302 @default.
- W2946320304 hasConceptScore W2946320304C33923547 @default.
- W2946320304 hasConceptScore W2946320304C41008148 @default.
- W2946320304 hasConceptScore W2946320304C50644808 @default.
- W2946320304 hasConceptScore W2946320304C73555534 @default.
- W2946320304 hasConceptScore W2946320304C79337645 @default.
- W2946320304 hasConceptScore W2946320304C95623464 @default.
- W2946320304 hasLocation W29463203041 @default.
- W2946320304 hasOpenAccess W2946320304 @default.
- W2946320304 hasPrimaryLocation W29463203041 @default.
- W2946320304 hasRelatedWork W2167582322 @default.
- W2946320304 hasRelatedWork W2337929971 @default.
- W2946320304 hasRelatedWork W2563096758 @default.
- W2946320304 hasRelatedWork W2972035100 @default.
- W2946320304 hasRelatedWork W3183283580 @default.
- W2946320304 hasRelatedWork W4250175685 @default.