Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946354992> ?p ?o ?g. }
- W2946354992 endingPage "1358" @default.
- W2946354992 startingPage "1348" @default.
- W2946354992 abstract "Abstract Aluminum is widely used in the electrical, automotive, transport and aerospace industries due to its remarkable properties, such as low density and relatively low costs. However, due to the low hardness and low yield strength, there are limitations in application of aluminum. To solve these limitations, aluminum is made with other hard materials in the form of nanocomposites. For this purpose, in this work, using B4C nanoparticles, Aluminum-boron carbide nanocomposites (Al-B4C) nanocomposites were prepared via ball milling processing. The ball milling process was carried out at room temperature under argon atmosphere using a planetary ball milling for 10 h at 300 rpm. The B4C nanoparticles content employed in these nanocomposites were 0, 5 and 10 wt%. To investigate the structural, mechanical and electrical properties of the Al-B4C nanocomposites, the powders were pressed and then sintered under argon atmosphere at 650 °C. The structure, density, hardness and electrical conductivity of the Al-B4C nanocomposites sintered tablets were investigated by X-ray Diffraction (XRD), Field Emission Scanning Electron microscopy (FESEM) with energy dispersive x-ray spectroscopy (EDS), Archimedes method, nanoindentation and eddy current test, respectively, and the results are discussed. The XRD patterns confirmed the presence of aluminum and B4C and the lack of any interphase and secondary phase in the Al-B4C nanocomposite. Distribution of B4C nanoparticles in Al-B4C nanocomposite was described via EDS assisted elemental mapping images. Moreover, with the addition of 5 and 10%wt. B4C nanoparticles in aluminum matrix, the hardness values of the Al-B4C nanocomposites was measured to be 138HV and 172HV which were higher than 67HV for the pure aluminum, respectively. Consequently, nanoindentation analysis showed that the hardness of Al-B4C nanocomposites was better than that of pure aluminum. Density values of Al-B4C nanocomposites were measured to be 2.5776 g/cm3 and 2.4949 g/cm3 which were lower than 2.6346 g/cm3 for the pure aluminum, respectively. Electrical conductivity of Al-B4C nanocomposites was measured to be 23%IACS and 13%IACS which were lower than 39% IACS for the pure aluminum, respectively. To evaluate the effect of particle size on the properties of Al-B4C composites, under the same conditions of Al-B4C nanocomposites preparation, Al-B4C microcomposites were prepared. With increasing B4C content, the hardness of Al-B4C nanocomposites were obtained higher than those for Al-B4C microcomposites. This behavior has been explained by Hall–Petch Model and Orowan strengthening. The density of the Al-B4C nanocomposites was obtained higher than those for Al-B4C microcomposites and the electrical conductivity of Al-B4C nanocomposites less than the resulting for Al-B4C microcomposites." @default.
- W2946354992 created "2019-05-29" @default.
- W2946354992 creator A5048288678 @default.
- W2946354992 creator A5049932631 @default.
- W2946354992 creator A5061786064 @default.
- W2946354992 creator A5065159264 @default.
- W2946354992 date "2019-08-01" @default.
- W2946354992 modified "2023-10-03" @default.
- W2946354992 title "Investigation of the effect of boron carbide nanoparticles on the structural, electrical and mechanical properties of Al-B4C nanocomposites" @default.
- W2946354992 cites W1255454239 @default.
- W2946354992 cites W1542908482 @default.
- W2946354992 cites W1922162333 @default.
- W2946354992 cites W1926262349 @default.
- W2946354992 cites W1965246743 @default.
- W2946354992 cites W1968807146 @default.
- W2946354992 cites W1980885978 @default.
- W2946354992 cites W1981071688 @default.
- W2946354992 cites W1987970165 @default.
- W2946354992 cites W1990330697 @default.
- W2946354992 cites W1990737612 @default.
- W2946354992 cites W1997662282 @default.
- W2946354992 cites W2001360101 @default.
- W2946354992 cites W2004158709 @default.
- W2946354992 cites W2014954740 @default.
- W2946354992 cites W2018101702 @default.
- W2946354992 cites W2020237403 @default.
- W2946354992 cites W2021172676 @default.
- W2946354992 cites W2026073554 @default.
- W2946354992 cites W2029104518 @default.
- W2946354992 cites W2031057960 @default.
- W2946354992 cites W2032104394 @default.
- W2946354992 cites W2032296440 @default.
- W2946354992 cites W2039230264 @default.
- W2946354992 cites W2042275116 @default.
- W2946354992 cites W2054486048 @default.
- W2946354992 cites W2055131419 @default.
- W2946354992 cites W2062895638 @default.
- W2946354992 cites W2068684652 @default.
- W2946354992 cites W2069692834 @default.
- W2946354992 cites W2069979546 @default.
- W2946354992 cites W2072921687 @default.
- W2946354992 cites W2074201219 @default.
- W2946354992 cites W2077974487 @default.
- W2946354992 cites W2083140047 @default.
- W2946354992 cites W2087707387 @default.
- W2946354992 cites W2087804016 @default.
- W2946354992 cites W2089302698 @default.
- W2946354992 cites W2089960189 @default.
- W2946354992 cites W2105776574 @default.
- W2946354992 cites W2127551411 @default.
- W2946354992 cites W2129643489 @default.
- W2946354992 cites W2148838766 @default.
- W2946354992 cites W2161988566 @default.
- W2946354992 cites W2213056845 @default.
- W2946354992 cites W2298051512 @default.
- W2946354992 cites W2330058010 @default.
- W2946354992 cites W2568193472 @default.
- W2946354992 cites W2618581970 @default.
- W2946354992 cites W2622518686 @default.
- W2946354992 cites W2622874306 @default.
- W2946354992 cites W2672923330 @default.
- W2946354992 cites W2739255145 @default.
- W2946354992 cites W2794408679 @default.
- W2946354992 cites W2802308557 @default.
- W2946354992 cites W3114382482 @default.
- W2946354992 cites W639382907 @default.
- W2946354992 doi "https://doi.org/10.1016/j.jallcom.2019.05.188" @default.
- W2946354992 hasPublicationYear "2019" @default.
- W2946354992 type Work @default.
- W2946354992 sameAs 2946354992 @default.
- W2946354992 citedByCount "25" @default.
- W2946354992 countsByYear W29463549922019 @default.
- W2946354992 countsByYear W29463549922020 @default.
- W2946354992 countsByYear W29463549922021 @default.
- W2946354992 countsByYear W29463549922022 @default.
- W2946354992 countsByYear W29463549922023 @default.
- W2946354992 crossrefType "journal-article" @default.
- W2946354992 hasAuthorship W2946354992A5048288678 @default.
- W2946354992 hasAuthorship W2946354992A5049932631 @default.
- W2946354992 hasAuthorship W2946354992A5061786064 @default.
- W2946354992 hasAuthorship W2946354992A5065159264 @default.
- W2946354992 hasConcept C155672457 @default.
- W2946354992 hasConcept C159985019 @default.
- W2946354992 hasConcept C171250308 @default.
- W2946354992 hasConcept C178790620 @default.
- W2946354992 hasConcept C185592680 @default.
- W2946354992 hasConcept C192562407 @default.
- W2946354992 hasConcept C2778794521 @default.
- W2946354992 hasConcept C501308230 @default.
- W2946354992 hasConcept C5335593 @default.
- W2946354992 hasConcept C92880739 @default.
- W2946354992 hasConceptScore W2946354992C155672457 @default.
- W2946354992 hasConceptScore W2946354992C159985019 @default.
- W2946354992 hasConceptScore W2946354992C171250308 @default.
- W2946354992 hasConceptScore W2946354992C178790620 @default.
- W2946354992 hasConceptScore W2946354992C185592680 @default.
- W2946354992 hasConceptScore W2946354992C192562407 @default.
- W2946354992 hasConceptScore W2946354992C2778794521 @default.