Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946446522> ?p ?o ?g. }
- W2946446522 endingPage "821" @default.
- W2946446522 startingPage "808" @default.
- W2946446522 abstract "Accurate and reliable air quality index (AQI) forecasting is extremely crucial for ecological environment and public health. A novel optimal-hybrid model, which fuses the advantage of secondary decomposition (SD), AI method and optimization algorithm, is developed for AQI forecasting in this paper. In the proposed SD method, wavelet decomposition (WD) is chosen as the primary decomposition technique to generate a high frequency detail sequence WD(D) and a low frequency approximation sequence WD(A). Variational mode decomposition (VMD) improved by sample entropy (SE) is adopted to smooth the WD(D), then long short-term memory (LSTM) neural network with good ability of learning and time series memory is applied to make it easy to be predicted. Least squares support vector machine (LSSVM) with the parameters optimized by the Bat algorithm (BA) considers air pollutant factors including PM2.5, PM10, SO2, CO, NO2 and O3, which is suitable for forecasting WD(A) that retains original information of AQI series. The ultimate forecast result of AQI can be obtained by accumulating the prediction values of each subseries. Notably, the proposed idea not only gives full play to the advantages of conventional SD, but solve the problem that the traditional time series prediction model based on decomposition technology can not consider the influential factors. Additionally, two daily AQI series from December 1, 2016 to December 31, 2018 respectively collected from Beijing and Guilin located in China are utilized as the case studies to verify the proposed model. Comprehensive comparisons with a set of evaluation indices indicate that the proposed optimal-hybrid model comprehensively captures the characteristics of the original AQI series and has high correct rate of forecasting AQI classes." @default.
- W2946446522 created "2019-05-29" @default.
- W2946446522 creator A5020335809 @default.
- W2946446522 creator A5043892552 @default.
- W2946446522 date "2019-09-01" @default.
- W2946446522 modified "2023-10-14" @default.
- W2946446522 title "A novel optimal-hybrid model for daily air quality index prediction considering air pollutant factors" @default.
- W2946446522 cites W1862394037 @default.
- W2946446522 cites W1964176024 @default.
- W2946446522 cites W1968840994 @default.
- W2946446522 cites W2000982976 @default.
- W2946446522 cites W2004971874 @default.
- W2946446522 cites W2010656236 @default.
- W2946446522 cites W2041471468 @default.
- W2946446522 cites W2064675550 @default.
- W2946446522 cites W2064815513 @default.
- W2946446522 cites W2093881173 @default.
- W2946446522 cites W2120879667 @default.
- W2946446522 cites W2132984323 @default.
- W2946446522 cites W2149080297 @default.
- W2946446522 cites W2167356632 @default.
- W2946446522 cites W2282992258 @default.
- W2946446522 cites W2313458828 @default.
- W2946446522 cites W2331700789 @default.
- W2946446522 cites W2337803771 @default.
- W2946446522 cites W2460924004 @default.
- W2946446522 cites W2553839055 @default.
- W2946446522 cites W2554097689 @default.
- W2946446522 cites W2555700109 @default.
- W2946446522 cites W2565536624 @default.
- W2946446522 cites W2566512888 @default.
- W2946446522 cites W2594385188 @default.
- W2946446522 cites W2604135396 @default.
- W2946446522 cites W2611205254 @default.
- W2946446522 cites W2739924642 @default.
- W2946446522 cites W2754663885 @default.
- W2946446522 cites W2762398515 @default.
- W2946446522 cites W2765723642 @default.
- W2946446522 cites W2774031856 @default.
- W2946446522 cites W2789682319 @default.
- W2946446522 cites W2795055853 @default.
- W2946446522 cites W2796178159 @default.
- W2946446522 cites W2846868212 @default.
- W2946446522 cites W2890969757 @default.
- W2946446522 cites W2891364071 @default.
- W2946446522 cites W2898461917 @default.
- W2946446522 cites W2901859786 @default.
- W2946446522 cites W2907910906 @default.
- W2946446522 cites W2911478139 @default.
- W2946446522 cites W2914223085 @default.
- W2946446522 doi "https://doi.org/10.1016/j.scitotenv.2019.05.288" @default.
- W2946446522 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31154159" @default.
- W2946446522 hasPublicationYear "2019" @default.
- W2946446522 type Work @default.
- W2946446522 sameAs 2946446522 @default.
- W2946446522 citedByCount "110" @default.
- W2946446522 countsByYear W29464465222020 @default.
- W2946446522 countsByYear W29464465222021 @default.
- W2946446522 countsByYear W29464465222022 @default.
- W2946446522 countsByYear W29464465222023 @default.
- W2946446522 crossrefType "journal-article" @default.
- W2946446522 hasAuthorship W2946446522A5020335809 @default.
- W2946446522 hasAuthorship W2946446522A5043892552 @default.
- W2946446522 hasConcept C105795698 @default.
- W2946446522 hasConcept C111919701 @default.
- W2946446522 hasConcept C11413529 @default.
- W2946446522 hasConcept C121332964 @default.
- W2946446522 hasConcept C126314574 @default.
- W2946446522 hasConcept C143724316 @default.
- W2946446522 hasConcept C151730666 @default.
- W2946446522 hasConcept C153294291 @default.
- W2946446522 hasConcept C154945302 @default.
- W2946446522 hasConcept C17744445 @default.
- W2946446522 hasConcept C191935318 @default.
- W2946446522 hasConcept C199539241 @default.
- W2946446522 hasConcept C2778258933 @default.
- W2946446522 hasConcept C2778304055 @default.
- W2946446522 hasConcept C33923547 @default.
- W2946446522 hasConcept C41008148 @default.
- W2946446522 hasConcept C48677424 @default.
- W2946446522 hasConcept C50644808 @default.
- W2946446522 hasConcept C86803240 @default.
- W2946446522 hasConceptScore W2946446522C105795698 @default.
- W2946446522 hasConceptScore W2946446522C111919701 @default.
- W2946446522 hasConceptScore W2946446522C11413529 @default.
- W2946446522 hasConceptScore W2946446522C121332964 @default.
- W2946446522 hasConceptScore W2946446522C126314574 @default.
- W2946446522 hasConceptScore W2946446522C143724316 @default.
- W2946446522 hasConceptScore W2946446522C151730666 @default.
- W2946446522 hasConceptScore W2946446522C153294291 @default.
- W2946446522 hasConceptScore W2946446522C154945302 @default.
- W2946446522 hasConceptScore W2946446522C17744445 @default.
- W2946446522 hasConceptScore W2946446522C191935318 @default.
- W2946446522 hasConceptScore W2946446522C199539241 @default.
- W2946446522 hasConceptScore W2946446522C2778258933 @default.
- W2946446522 hasConceptScore W2946446522C2778304055 @default.
- W2946446522 hasConceptScore W2946446522C33923547 @default.
- W2946446522 hasConceptScore W2946446522C41008148 @default.