Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946446899> ?p ?o ?g. }
- W2946446899 abstract "The effectiveness of biosignal generation and data augmentation with biosignal generative models based on generative adversarial networks (GANs), which are a type of deep learning technique, was demonstrated in our previous paper. GAN-based generative models only learn the projection between a random distribution as input data and the distribution of training data.Therefore, the relationship between input and generated data is unclear, and the characteristics of the data generated from this model cannot be controlled. This study proposes a method for generating time-series data based on GANs and explores their ability to generate biosignals with certain classes and characteristics. Moreover, in the proposed method, latent variables are analyzed using canonical correlation analysis (CCA) to represent the relationship between input and generated data as canonical loadings. Using these loadings, we can control the characteristics of the data generated by the proposed method. The influence of class labels on generated data is analyzed by feeding the data interpolated between two class labels into the generator of the proposed GANs. The CCA of the latent variables is shown to be an effective method of controlling the generated data characteristics. We are able to model the distribution of the time-series data without requiring domain-dependent knowledge using the proposed method. Furthermore, it is possible to control the characteristics of these data by analyzing the model trained using the proposed method. To the best of our knowledge, this work is the first to generate biosignals using GANs while controlling the characteristics of the generated data." @default.
- W2946446899 created "2019-05-29" @default.
- W2946446899 creator A5014439017 @default.
- W2946446899 creator A5018884738 @default.
- W2946446899 creator A5051387162 @default.
- W2946446899 date "2019-05-17" @default.
- W2946446899 modified "2023-09-25" @default.
- W2946446899 title "Biosignal Generation and Latent Variable Analysis with Recurrent Generative Adversarial Networks" @default.
- W2946446899 cites W1579694346 @default.
- W2946446899 cites W1971416249 @default.
- W2946446899 cites W2004581801 @default.
- W2946446899 cites W2007811545 @default.
- W2946446899 cites W2008462638 @default.
- W2946446899 cites W2040572095 @default.
- W2946446899 cites W2053744708 @default.
- W2946446899 cites W2064675550 @default.
- W2946446899 cites W2083125747 @default.
- W2946446899 cites W2091735588 @default.
- W2946446899 cites W2099471712 @default.
- W2946446899 cites W2108563286 @default.
- W2946446899 cites W2128160875 @default.
- W2946446899 cites W2132904166 @default.
- W2946446899 cites W2141885969 @default.
- W2946446899 cites W2162613571 @default.
- W2946446899 cites W2548275288 @default.
- W2946446899 cites W2554314924 @default.
- W2946446899 cites W2555077524 @default.
- W2946446899 cites W2617938108 @default.
- W2946446899 cites W2621205740 @default.
- W2946446899 cites W2622068151 @default.
- W2946446899 cites W2754331792 @default.
- W2946446899 cites W2779466124 @default.
- W2946446899 cites W2799380717 @default.
- W2946446899 cites W2810632432 @default.
- W2946446899 cites W2962793481 @default.
- W2946446899 cites W2963226019 @default.
- W2946446899 cites W2963470893 @default.
- W2946446899 cites W2963836885 @default.
- W2946446899 cites W2963919481 @default.
- W2946446899 cites W2964121744 @default.
- W2946446899 cites W2964268978 @default.
- W2946446899 cites W2964289981 @default.
- W2946446899 doi "https://doi.org/10.48550/arxiv.1905.07136" @default.
- W2946446899 hasPublicationYear "2019" @default.
- W2946446899 type Work @default.
- W2946446899 sameAs 2946446899 @default.
- W2946446899 citedByCount "2" @default.
- W2946446899 countsByYear W29464468992019 @default.
- W2946446899 countsByYear W29464468992023 @default.
- W2946446899 crossrefType "posted-content" @default.
- W2946446899 hasAuthorship W2946446899A5014439017 @default.
- W2946446899 hasAuthorship W2946446899A5018884738 @default.
- W2946446899 hasAuthorship W2946446899A5051387162 @default.
- W2946446899 hasBestOaLocation W29464468991 @default.
- W2946446899 hasConcept C119857082 @default.
- W2946446899 hasConcept C121332964 @default.
- W2946446899 hasConcept C124101348 @default.
- W2946446899 hasConcept C138958017 @default.
- W2946446899 hasConcept C153180895 @default.
- W2946446899 hasConcept C153874254 @default.
- W2946446899 hasConcept C154945302 @default.
- W2946446899 hasConcept C163258240 @default.
- W2946446899 hasConcept C167966045 @default.
- W2946446899 hasConcept C199360897 @default.
- W2946446899 hasConcept C2777212361 @default.
- W2946446899 hasConcept C2779055241 @default.
- W2946446899 hasConcept C2780992000 @default.
- W2946446899 hasConcept C39890363 @default.
- W2946446899 hasConcept C41008148 @default.
- W2946446899 hasConcept C51167844 @default.
- W2946446899 hasConcept C555944384 @default.
- W2946446899 hasConcept C62520636 @default.
- W2946446899 hasConcept C76155785 @default.
- W2946446899 hasConceptScore W2946446899C119857082 @default.
- W2946446899 hasConceptScore W2946446899C121332964 @default.
- W2946446899 hasConceptScore W2946446899C124101348 @default.
- W2946446899 hasConceptScore W2946446899C138958017 @default.
- W2946446899 hasConceptScore W2946446899C153180895 @default.
- W2946446899 hasConceptScore W2946446899C153874254 @default.
- W2946446899 hasConceptScore W2946446899C154945302 @default.
- W2946446899 hasConceptScore W2946446899C163258240 @default.
- W2946446899 hasConceptScore W2946446899C167966045 @default.
- W2946446899 hasConceptScore W2946446899C199360897 @default.
- W2946446899 hasConceptScore W2946446899C2777212361 @default.
- W2946446899 hasConceptScore W2946446899C2779055241 @default.
- W2946446899 hasConceptScore W2946446899C2780992000 @default.
- W2946446899 hasConceptScore W2946446899C39890363 @default.
- W2946446899 hasConceptScore W2946446899C41008148 @default.
- W2946446899 hasConceptScore W2946446899C51167844 @default.
- W2946446899 hasConceptScore W2946446899C555944384 @default.
- W2946446899 hasConceptScore W2946446899C62520636 @default.
- W2946446899 hasConceptScore W2946446899C76155785 @default.
- W2946446899 hasLocation W29464468991 @default.
- W2946446899 hasOpenAccess W2946446899 @default.
- W2946446899 hasPrimaryLocation W29464468991 @default.
- W2946446899 hasRelatedWork W2742479045 @default.
- W2946446899 hasRelatedWork W2769954154 @default.
- W2946446899 hasRelatedWork W2787151388 @default.
- W2946446899 hasRelatedWork W2946446899 @default.
- W2946446899 hasRelatedWork W2964245526 @default.