Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946476323> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2946476323 abstract "Wireless communication networks are subject to various types of adversarial attacks, which might be passive in the form of eavesdropping, or active in the form of jamming. For the former category, even if the traffic is encrypted, an adversary performing analysis on observed traffic signatures may lead to leakage of the so called contextual information regarding the traffic. New advances in the field of machine learning also result in significantly more complex adversarial units, which may deduce different forms and uses of such contextual information. In this work, we are interested in power adaptation against an intelligent adversary which utilizes deep learning and attempts to perform predictions and time forecasting on the observed traffic traces to estimate the imminent traffic intensities. Based on its traffic predictions, the adversary might possibly activate its jamming mode and utilize its limited power more efficiently to inflict maximal damage. As a method of mitigation, the transmitter may want to increase transmitter power if it expects a higher probability of jamming, and it has a significant amount of upcoming data to transmit. We leverage Lyapunov optimization and virtual queues to meet a certain level of data transmission reliability while also minimizing power consumption." @default.
- W2946476323 created "2019-05-29" @default.
- W2946476323 creator A5068470449 @default.
- W2946476323 creator A5090981552 @default.
- W2946476323 date "2019-05-15" @default.
- W2946476323 modified "2023-09-26" @default.
- W2946476323 title "Efficient Power Adaptation against Deep Learning Based Predictive Adversaries" @default.
- W2946476323 cites W1510529350 @default.
- W2946476323 cites W2038007012 @default.
- W2946476323 cites W2047399268 @default.
- W2946476323 cites W2064675550 @default.
- W2946476323 cites W2565612488 @default.
- W2946476323 cites W2884858462 @default.
- W2946476323 cites W2907201671 @default.
- W2946476323 cites W2910883594 @default.
- W2946476323 cites W2963834268 @default.
- W2946476323 cites W2964277700 @default.
- W2946476323 doi "https://doi.org/10.1145/3324921.3328787" @default.
- W2946476323 hasPublicationYear "2019" @default.
- W2946476323 type Work @default.
- W2946476323 sameAs 2946476323 @default.
- W2946476323 citedByCount "1" @default.
- W2946476323 countsByYear W29464763232020 @default.
- W2946476323 crossrefType "proceedings-article" @default.
- W2946476323 hasAuthorship W2946476323A5068470449 @default.
- W2946476323 hasAuthorship W2946476323A5090981552 @default.
- W2946476323 hasConcept C108583219 @default.
- W2946476323 hasConcept C111472728 @default.
- W2946476323 hasConcept C119857082 @default.
- W2946476323 hasConcept C121332964 @default.
- W2946476323 hasConcept C138885662 @default.
- W2946476323 hasConcept C139807058 @default.
- W2946476323 hasConcept C154945302 @default.
- W2946476323 hasConcept C15744967 @default.
- W2946476323 hasConcept C163258240 @default.
- W2946476323 hasConcept C169760540 @default.
- W2946476323 hasConcept C2778136018 @default.
- W2946476323 hasConcept C41008148 @default.
- W2946476323 hasConcept C62520636 @default.
- W2946476323 hasConceptScore W2946476323C108583219 @default.
- W2946476323 hasConceptScore W2946476323C111472728 @default.
- W2946476323 hasConceptScore W2946476323C119857082 @default.
- W2946476323 hasConceptScore W2946476323C121332964 @default.
- W2946476323 hasConceptScore W2946476323C138885662 @default.
- W2946476323 hasConceptScore W2946476323C139807058 @default.
- W2946476323 hasConceptScore W2946476323C154945302 @default.
- W2946476323 hasConceptScore W2946476323C15744967 @default.
- W2946476323 hasConceptScore W2946476323C163258240 @default.
- W2946476323 hasConceptScore W2946476323C169760540 @default.
- W2946476323 hasConceptScore W2946476323C2778136018 @default.
- W2946476323 hasConceptScore W2946476323C41008148 @default.
- W2946476323 hasConceptScore W2946476323C62520636 @default.
- W2946476323 hasLocation W29464763231 @default.
- W2946476323 hasOpenAccess W2946476323 @default.
- W2946476323 hasPrimaryLocation W29464763231 @default.
- W2946476323 hasRelatedWork W2922457425 @default.
- W2946476323 hasRelatedWork W3014300295 @default.
- W2946476323 hasRelatedWork W3164822677 @default.
- W2946476323 hasRelatedWork W3215138031 @default.
- W2946476323 hasRelatedWork W4223943233 @default.
- W2946476323 hasRelatedWork W4225161397 @default.
- W2946476323 hasRelatedWork W4250304930 @default.
- W2946476323 hasRelatedWork W4299487748 @default.
- W2946476323 hasRelatedWork W4309045103 @default.
- W2946476323 hasRelatedWork W4312200629 @default.
- W2946476323 isParatext "false" @default.
- W2946476323 isRetracted "false" @default.
- W2946476323 magId "2946476323" @default.
- W2946476323 workType "article" @default.