Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946476763> ?p ?o ?g. }
- W2946476763 endingPage "304" @default.
- W2946476763 startingPage "287" @default.
- W2946476763 abstract "Abstract Car-following (CF) and lane-changing (LC) behaviors are two basic movements in traffic flow which are generally modeled separately in the literature, and thus the interaction between the two behaviors may be easily ignored in separated models and lead to unrealistic traffic flow description. In this paper, we adopt a deep learning model, long short-term memory (LSTM) neural networks, to model the two basic behaviors simultaneously. By only observing the position information of the six vehicles surrounding the subject vehicle, the LSTM can extract the significant features that influence the CF and LC behaviors automatically and predict the vehicles behaviors with time-series data and memory effects. In addition, we propose a hybrid retraining constrained (HRC) training method to further optimize the LSTM model. With the I-80 trajectory data of NGSIM dataset we train and test the HRC LSTM model, while the results show that HRC LSTM model can accurately estimate CF and LC behaviors simultaneously with low longitudinal trajectories error and high LC prediction accuracy compared with the classical models. We also evaluate the transferability of the proposed model with the US101 dataset and a good transferability result is obtained as well." @default.
- W2946476763 created "2019-05-29" @default.
- W2946476763 creator A5004080085 @default.
- W2946476763 creator A5011084676 @default.
- W2946476763 creator A5021991832 @default.
- W2946476763 creator A5091093335 @default.
- W2946476763 date "2019-07-01" @default.
- W2946476763 modified "2023-10-03" @default.
- W2946476763 title "Simultaneous modeling of car-following and lane-changing behaviors using deep learning" @default.
- W2946476763 cites W1833552892 @default.
- W2946476763 cites W1965573456 @default.
- W2946476763 cites W1966963739 @default.
- W2946476763 cites W1970019272 @default.
- W2946476763 cites W1974218275 @default.
- W2946476763 cites W1980202415 @default.
- W2946476763 cites W1983775105 @default.
- W2946476763 cites W1985403019 @default.
- W2946476763 cites W1990436125 @default.
- W2946476763 cites W1995478605 @default.
- W2946476763 cites W1996878604 @default.
- W2946476763 cites W2004353783 @default.
- W2946476763 cites W2007700466 @default.
- W2946476763 cites W2014928429 @default.
- W2946476763 cites W2043183617 @default.
- W2946476763 cites W2044178847 @default.
- W2946476763 cites W2048679005 @default.
- W2946476763 cites W2059461096 @default.
- W2946476763 cites W2061437468 @default.
- W2946476763 cites W2064675550 @default.
- W2946476763 cites W2073177254 @default.
- W2946476763 cites W2076063813 @default.
- W2946476763 cites W2085443648 @default.
- W2946476763 cites W2085842743 @default.
- W2946476763 cites W2090023516 @default.
- W2946476763 cites W2090403203 @default.
- W2946476763 cites W2094039233 @default.
- W2946476763 cites W2101276701 @default.
- W2946476763 cites W2107686700 @default.
- W2946476763 cites W2111876879 @default.
- W2946476763 cites W2126270075 @default.
- W2946476763 cites W2133556223 @default.
- W2946476763 cites W2135956515 @default.
- W2946476763 cites W2136848157 @default.
- W2946476763 cites W2144388787 @default.
- W2946476763 cites W2144683894 @default.
- W2946476763 cites W2144713380 @default.
- W2946476763 cites W2165306508 @default.
- W2946476763 cites W2166880842 @default.
- W2946476763 cites W2513170225 @default.
- W2946476763 cites W2582443945 @default.
- W2946476763 cites W2594265094 @default.
- W2946476763 cites W2734024016 @default.
- W2946476763 cites W2755552418 @default.
- W2946476763 cites W2766447205 @default.
- W2946476763 cites W2886622679 @default.
- W2946476763 cites W2053924531 @default.
- W2946476763 doi "https://doi.org/10.1016/j.trc.2019.05.021" @default.
- W2946476763 hasPublicationYear "2019" @default.
- W2946476763 type Work @default.
- W2946476763 sameAs 2946476763 @default.
- W2946476763 citedByCount "93" @default.
- W2946476763 countsByYear W29464767632019 @default.
- W2946476763 countsByYear W29464767632020 @default.
- W2946476763 countsByYear W29464767632021 @default.
- W2946476763 countsByYear W29464767632022 @default.
- W2946476763 countsByYear W29464767632023 @default.
- W2946476763 crossrefType "journal-article" @default.
- W2946476763 hasAuthorship W2946476763A5004080085 @default.
- W2946476763 hasAuthorship W2946476763A5011084676 @default.
- W2946476763 hasAuthorship W2946476763A5021991832 @default.
- W2946476763 hasAuthorship W2946476763A5091093335 @default.
- W2946476763 hasConcept C108583219 @default.
- W2946476763 hasConcept C127413603 @default.
- W2946476763 hasConcept C154945302 @default.
- W2946476763 hasConcept C171146098 @default.
- W2946476763 hasConcept C41008148 @default.
- W2946476763 hasConceptScore W2946476763C108583219 @default.
- W2946476763 hasConceptScore W2946476763C127413603 @default.
- W2946476763 hasConceptScore W2946476763C154945302 @default.
- W2946476763 hasConceptScore W2946476763C171146098 @default.
- W2946476763 hasConceptScore W2946476763C41008148 @default.
- W2946476763 hasFunder F4320321001 @default.
- W2946476763 hasFunder F4320335777 @default.
- W2946476763 hasLocation W29464767631 @default.
- W2946476763 hasOpenAccess W2946476763 @default.
- W2946476763 hasPrimaryLocation W29464767631 @default.
- W2946476763 hasRelatedWork W2126887587 @default.
- W2946476763 hasRelatedWork W2731899572 @default.
- W2946476763 hasRelatedWork W2939353110 @default.
- W2946476763 hasRelatedWork W2941846814 @default.
- W2946476763 hasRelatedWork W2948658236 @default.
- W2946476763 hasRelatedWork W3009238340 @default.
- W2946476763 hasRelatedWork W3118091236 @default.
- W2946476763 hasRelatedWork W3215138031 @default.
- W2946476763 hasRelatedWork W4230611425 @default.
- W2946476763 hasRelatedWork W4312962853 @default.
- W2946476763 hasVolume "104" @default.
- W2946476763 isParatext "false" @default.