Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946522182> ?p ?o ?g. }
- W2946522182 endingPage "14" @default.
- W2946522182 startingPage "1" @default.
- W2946522182 abstract "Aims: To detect the adulterant in edible oil rapidly.
 Study Design: Authenticity and adulteration detection in edible oils are the increasing challenges for researchers, consumers, industries and regulatory agencies. Traditional approaches may not be the most effective option to combat against adulteration in edible oils as that’s are complex, laborious, expensive, require a high degree of technical knowledge when interpreting data and produce hazardous chemical. Consequently, a cost effective, rapid and reliable method is required.
 Place and Duration of the Study: The experiment was conducted jointly in the laboratory of the Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh and the Institute of Food Science and Technology, BCSIR, Dhaka.
 Methods: In this study, Fourier Transform Infrared spectroscopy coupled with multivariate analysis was used for adulteration detection in sunflower and rice bran oil. Sunflower oil was adulterated with soybean oil in the range of 10-50% (v/v) and rice bran oil was adulterated with palm oil in the range of 4-40% (v/v) at approximately 10% and 5% increments respectively. FTIR spectra were recorded in the wavenumber range of 4000-650cm-1.
 Results: FTIR spectra data in the whole spectral range and reduced spectral range were used to develop a partial least square regression (PLSR) model to predict the level of adulteration in sunflower and palm oils. Good prediction model was obtained for all PLSR models with a coefficient of determination (R2) of >= 0.985 and root mean square errors of calibration (RMSEC) in the range of 0-1.7325%.
 Conclusion: The result suggested that FTIR spectroscopy associated with multivariate analysis has the great potential for a rapid and non-destructive detection of adulteration in edible oils laborious conventional analytical techniques." @default.
- W2946522182 created "2019-05-29" @default.
- W2946522182 creator A5039556564 @default.
- W2946522182 creator A5059033069 @default.
- W2946522182 creator A5064289674 @default.
- W2946522182 creator A5080328543 @default.
- W2946522182 creator A5090924308 @default.
- W2946522182 date "2019-05-22" @default.
- W2946522182 modified "2023-09-24" @default.
- W2946522182 title "Detection of Adulteration in Edible Oil Using FT-IR Spectroscopy and Machine Learning" @default.
- W2946522182 cites W1146069309 @default.
- W2946522182 cites W1967554761 @default.
- W2946522182 cites W1976985468 @default.
- W2946522182 cites W1992509616 @default.
- W2946522182 cites W2004966297 @default.
- W2946522182 cites W2007596860 @default.
- W2946522182 cites W2016060993 @default.
- W2946522182 cites W2019795873 @default.
- W2946522182 cites W2025014641 @default.
- W2946522182 cites W2034951264 @default.
- W2946522182 cites W2035355777 @default.
- W2946522182 cites W2040848313 @default.
- W2946522182 cites W2042792113 @default.
- W2946522182 cites W2058530109 @default.
- W2946522182 cites W2069537516 @default.
- W2946522182 cites W2073503722 @default.
- W2946522182 cites W2080999582 @default.
- W2946522182 cites W2082214882 @default.
- W2946522182 cites W2086044562 @default.
- W2946522182 cites W2099206930 @default.
- W2946522182 cites W2122547531 @default.
- W2946522182 cites W2156550005 @default.
- W2946522182 cites W2158863190 @default.
- W2946522182 cites W2290313001 @default.
- W2946522182 cites W358246182 @default.
- W2946522182 doi "https://doi.org/10.9734/ijbcrr/2019/v26i130085" @default.
- W2946522182 hasPublicationYear "2019" @default.
- W2946522182 type Work @default.
- W2946522182 sameAs 2946522182 @default.
- W2946522182 citedByCount "4" @default.
- W2946522182 countsByYear W29465221822021 @default.
- W2946522182 countsByYear W29465221822022 @default.
- W2946522182 crossrefType "journal-article" @default.
- W2946522182 hasAuthorship W2946522182A5039556564 @default.
- W2946522182 hasAuthorship W2946522182A5059033069 @default.
- W2946522182 hasAuthorship W2946522182A5064289674 @default.
- W2946522182 hasAuthorship W2946522182A5080328543 @default.
- W2946522182 hasAuthorship W2946522182A5090924308 @default.
- W2946522182 hasBestOaLocation W29465221821 @default.
- W2946522182 hasConcept C105795698 @default.
- W2946522182 hasConcept C114614502 @default.
- W2946522182 hasConcept C127413603 @default.
- W2946522182 hasConcept C128990827 @default.
- W2946522182 hasConcept C160892712 @default.
- W2946522182 hasConcept C178790620 @default.
- W2946522182 hasConcept C185592680 @default.
- W2946522182 hasConcept C206139338 @default.
- W2946522182 hasConcept C22354355 @default.
- W2946522182 hasConcept C2776873940 @default.
- W2946522182 hasConcept C2778572059 @default.
- W2946522182 hasConcept C2779197568 @default.
- W2946522182 hasConcept C2779567708 @default.
- W2946522182 hasConcept C2780556605 @default.
- W2946522182 hasConcept C2994459887 @default.
- W2946522182 hasConcept C31903555 @default.
- W2946522182 hasConcept C33923547 @default.
- W2946522182 hasConcept C39432304 @default.
- W2946522182 hasConcept C42360764 @default.
- W2946522182 hasConcept C43617362 @default.
- W2946522182 hasConceptScore W2946522182C105795698 @default.
- W2946522182 hasConceptScore W2946522182C114614502 @default.
- W2946522182 hasConceptScore W2946522182C127413603 @default.
- W2946522182 hasConceptScore W2946522182C128990827 @default.
- W2946522182 hasConceptScore W2946522182C160892712 @default.
- W2946522182 hasConceptScore W2946522182C178790620 @default.
- W2946522182 hasConceptScore W2946522182C185592680 @default.
- W2946522182 hasConceptScore W2946522182C206139338 @default.
- W2946522182 hasConceptScore W2946522182C22354355 @default.
- W2946522182 hasConceptScore W2946522182C2776873940 @default.
- W2946522182 hasConceptScore W2946522182C2778572059 @default.
- W2946522182 hasConceptScore W2946522182C2779197568 @default.
- W2946522182 hasConceptScore W2946522182C2779567708 @default.
- W2946522182 hasConceptScore W2946522182C2780556605 @default.
- W2946522182 hasConceptScore W2946522182C2994459887 @default.
- W2946522182 hasConceptScore W2946522182C31903555 @default.
- W2946522182 hasConceptScore W2946522182C33923547 @default.
- W2946522182 hasConceptScore W2946522182C39432304 @default.
- W2946522182 hasConceptScore W2946522182C42360764 @default.
- W2946522182 hasConceptScore W2946522182C43617362 @default.
- W2946522182 hasLocation W29465221821 @default.
- W2946522182 hasOpenAccess W2946522182 @default.
- W2946522182 hasPrimaryLocation W29465221821 @default.
- W2946522182 hasRelatedWork W1201764567 @default.
- W2946522182 hasRelatedWork W1543150491 @default.
- W2946522182 hasRelatedWork W1970910859 @default.
- W2946522182 hasRelatedWork W2025344390 @default.
- W2946522182 hasRelatedWork W2049086159 @default.
- W2946522182 hasRelatedWork W2082596049 @default.