Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946543151> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2946543151 abstract "Wireless networks are prone to jamming attacks due to the broadcast nature of the wireless transmission environment. The effect of jamming attacks can be further increased as the jammers can focus their signals on reference signals of the transmitters, to further deteriorate the transmission performance. In this paper, we aim to jointly determine the presence of the jammer, along with its attack characteristics by using neural networks. Two neural network architectures are implemented; deep convolutional neural networks and deep recurrent neural networks. The presence of jammer and the transmitter and the type of the jammer is determined through a diverse set of scenarios that are implemented on software defined radios using orthogonal frequency division multiplexing based signaling. To improve the detection performance, prepossessing techniques are applied. Test results show that the proposed approach can effectively detect and classify the jamming attacks with around 85% accuracy." @default.
- W2946543151 created "2019-05-29" @default.
- W2946543151 creator A5022600471 @default.
- W2946543151 creator A5030005266 @default.
- W2946543151 creator A5070737400 @default.
- W2946543151 date "2019-05-15" @default.
- W2946543151 modified "2023-10-17" @default.
- W2946543151 title "Jammer Detection based on Artificial Neural Networks" @default.
- W2946543151 cites W2034139177 @default.
- W2946543151 cites W2064675550 @default.
- W2946543151 cites W2132694208 @default.
- W2946543151 cites W2756320464 @default.
- W2946543151 cites W2803807991 @default.
- W2946543151 cites W2964277700 @default.
- W2946543151 cites W3004396924 @default.
- W2946543151 doi "https://doi.org/10.1145/3324921.3328788" @default.
- W2946543151 hasPublicationYear "2019" @default.
- W2946543151 type Work @default.
- W2946543151 sameAs 2946543151 @default.
- W2946543151 citedByCount "26" @default.
- W2946543151 countsByYear W29465431512019 @default.
- W2946543151 countsByYear W29465431512020 @default.
- W2946543151 countsByYear W29465431512021 @default.
- W2946543151 countsByYear W29465431512022 @default.
- W2946543151 countsByYear W29465431512023 @default.
- W2946543151 crossrefType "proceedings-article" @default.
- W2946543151 hasAuthorship W2946543151A5022600471 @default.
- W2946543151 hasAuthorship W2946543151A5030005266 @default.
- W2946543151 hasAuthorship W2946543151A5070737400 @default.
- W2946543151 hasConcept C153180895 @default.
- W2946543151 hasConcept C154945302 @default.
- W2946543151 hasConcept C175202392 @default.
- W2946543151 hasConcept C177973122 @default.
- W2946543151 hasConcept C41008148 @default.
- W2946543151 hasConcept C50644808 @default.
- W2946543151 hasConceptScore W2946543151C153180895 @default.
- W2946543151 hasConceptScore W2946543151C154945302 @default.
- W2946543151 hasConceptScore W2946543151C175202392 @default.
- W2946543151 hasConceptScore W2946543151C177973122 @default.
- W2946543151 hasConceptScore W2946543151C41008148 @default.
- W2946543151 hasConceptScore W2946543151C50644808 @default.
- W2946543151 hasLocation W29465431511 @default.
- W2946543151 hasOpenAccess W2946543151 @default.
- W2946543151 hasPrimaryLocation W29465431511 @default.
- W2946543151 hasRelatedWork W1548385991 @default.
- W2946543151 hasRelatedWork W1584270863 @default.
- W2946543151 hasRelatedWork W1595652908 @default.
- W2946543151 hasRelatedWork W180587397 @default.
- W2946543151 hasRelatedWork W2085961337 @default.
- W2946543151 hasRelatedWork W2366803925 @default.
- W2946543151 hasRelatedWork W2379874775 @default.
- W2946543151 hasRelatedWork W2386387936 @default.
- W2946543151 hasRelatedWork W2950022897 @default.
- W2946543151 hasRelatedWork W1629725936 @default.
- W2946543151 isParatext "false" @default.
- W2946543151 isRetracted "false" @default.
- W2946543151 magId "2946543151" @default.
- W2946543151 workType "article" @default.