Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946570722> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2946570722 abstract "Keyword extraction is an indispensable step for many natural language processing and information retrieval applications such as; text summarization and search engine optimization. Keywords hold the most important information describing the content of a document. With the increasing volume and variety of unlabeled documents on the Internet, the need for automatic keyword extraction methods increases. Even though keyword extraction can be used in many applications, Arabic research in the field still lacking. In this paper, a supervised learning technique that uses statistical features and Support Vector Machine classifier was implemented and applied to extract the keywords from Arabic news documents. The proposed supervised learning approach achieved a precision of 0.77 and a recall of 0.58." @default.
- W2946570722 created "2019-05-29" @default.
- W2946570722 creator A5018231954 @default.
- W2946570722 creator A5030191413 @default.
- W2946570722 date "2019-04-01" @default.
- W2946570722 modified "2023-09-29" @default.
- W2946570722 title "Automated Keyword Extraction using Support Vector Machine from Arabic News Documents" @default.
- W2946570722 cites W1509979276 @default.
- W2946570722 cites W2044909270 @default.
- W2946570722 cites W2061118645 @default.
- W2946570722 cites W2202210819 @default.
- W2946570722 cites W2614110591 @default.
- W2946570722 cites W2901613113 @default.
- W2946570722 doi "https://doi.org/10.1109/jeeit.2019.8717420" @default.
- W2946570722 hasPublicationYear "2019" @default.
- W2946570722 type Work @default.
- W2946570722 sameAs 2946570722 @default.
- W2946570722 citedByCount "11" @default.
- W2946570722 countsByYear W29465707222019 @default.
- W2946570722 countsByYear W29465707222020 @default.
- W2946570722 countsByYear W29465707222021 @default.
- W2946570722 countsByYear W29465707222022 @default.
- W2946570722 countsByYear W29465707222023 @default.
- W2946570722 crossrefType "proceedings-article" @default.
- W2946570722 hasAuthorship W2946570722A5018231954 @default.
- W2946570722 hasAuthorship W2946570722A5030191413 @default.
- W2946570722 hasConcept C12267149 @default.
- W2946570722 hasConcept C134714966 @default.
- W2946570722 hasConcept C138885662 @default.
- W2946570722 hasConcept C154945302 @default.
- W2946570722 hasConcept C170858558 @default.
- W2946570722 hasConcept C195807954 @default.
- W2946570722 hasConcept C204321447 @default.
- W2946570722 hasConcept C23123220 @default.
- W2946570722 hasConcept C2780288562 @default.
- W2946570722 hasConcept C2988412617 @default.
- W2946570722 hasConcept C41008148 @default.
- W2946570722 hasConcept C41895202 @default.
- W2946570722 hasConcept C81669768 @default.
- W2946570722 hasConcept C95623464 @default.
- W2946570722 hasConcept C96455323 @default.
- W2946570722 hasConceptScore W2946570722C12267149 @default.
- W2946570722 hasConceptScore W2946570722C134714966 @default.
- W2946570722 hasConceptScore W2946570722C138885662 @default.
- W2946570722 hasConceptScore W2946570722C154945302 @default.
- W2946570722 hasConceptScore W2946570722C170858558 @default.
- W2946570722 hasConceptScore W2946570722C195807954 @default.
- W2946570722 hasConceptScore W2946570722C204321447 @default.
- W2946570722 hasConceptScore W2946570722C23123220 @default.
- W2946570722 hasConceptScore W2946570722C2780288562 @default.
- W2946570722 hasConceptScore W2946570722C2988412617 @default.
- W2946570722 hasConceptScore W2946570722C41008148 @default.
- W2946570722 hasConceptScore W2946570722C41895202 @default.
- W2946570722 hasConceptScore W2946570722C81669768 @default.
- W2946570722 hasConceptScore W2946570722C95623464 @default.
- W2946570722 hasConceptScore W2946570722C96455323 @default.
- W2946570722 hasLocation W29465707221 @default.
- W2946570722 hasOpenAccess W2946570722 @default.
- W2946570722 hasPrimaryLocation W29465707221 @default.
- W2946570722 hasRelatedWork W132250100 @default.
- W2946570722 hasRelatedWork W2093597205 @default.
- W2946570722 hasRelatedWork W2352924119 @default.
- W2946570722 hasRelatedWork W2380641910 @default.
- W2946570722 hasRelatedWork W2389846579 @default.
- W2946570722 hasRelatedWork W2392495745 @default.
- W2946570722 hasRelatedWork W2725657302 @default.
- W2946570722 hasRelatedWork W2946570722 @default.
- W2946570722 hasRelatedWork W3033951050 @default.
- W2946570722 hasRelatedWork W4282981802 @default.
- W2946570722 isParatext "false" @default.
- W2946570722 isRetracted "false" @default.
- W2946570722 magId "2946570722" @default.
- W2946570722 workType "article" @default.