Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946598687> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2946598687 endingPage "235" @default.
- W2946598687 startingPage "223" @default.
- W2946598687 abstract "Brain-inspired computing is a research hotspot in artificial intelligence (AI). One of the key problems in this field is how to find the bridge between brain connectivity and data correlation in a connection-to-cognition model. Functional magnetic resonance imaging (fMRI) signals provide rich information about brain activities. Existing modeling approaches with fMRI focus on the strength information, but neglect structural information. In a previous work, we proposed a monolayer correlation network (CorrNet) to model the structural connectivity. In this paper, we extend the monolayer CorrNet to a hierarchical correlation network (HcorrNet) by analysing visual stimuli of natural images and fMRI signals in the entire visual cortex, that is, V1, V2 V3, V4, fusiform face area (FFA), the lateral occipital complex (LOC) and parahippocampal place area (PPA). Through the HcorrNet, the efficient connectivity of the brain can be inferred layer by layer. Then, the stimulus-sensitive activity mode of voxels can be extracted, and the forward encoding process of visual perception can be modeled. Both of them can guide the decoding process of fMRI signals, including classification and image reconstruction. In the experiments, we improved a dynamic evolving spike neuron network (SNN) as the classifier, and used Generative Adversarial Networks (GANs) to reconstruct image." @default.
- W2946598687 created "2019-05-29" @default.
- W2946598687 creator A5047405956 @default.
- W2946598687 creator A5051184401 @default.
- W2946598687 creator A5056469736 @default.
- W2946598687 creator A5073446393 @default.
- W2946598687 creator A5077852542 @default.
- W2946598687 date "2019-01-01" @default.
- W2946598687 modified "2023-10-13" @default.
- W2946598687 title "Exploring Brain Effective Connectivity in Visual Perception Using a Hierarchical Correlation Network" @default.
- W2946598687 cites W1994341528 @default.
- W2946598687 cites W2007226897 @default.
- W2946598687 cites W2012027725 @default.
- W2946598687 cites W2016708835 @default.
- W2946598687 cites W2073829263 @default.
- W2946598687 cites W2102336469 @default.
- W2946598687 cites W2115831804 @default.
- W2946598687 cites W2123923307 @default.
- W2946598687 cites W2167237727 @default.
- W2946598687 cites W2316169433 @default.
- W2946598687 cites W247192705 @default.
- W2946598687 cites W2507706845 @default.
- W2946598687 cites W2587937998 @default.
- W2946598687 cites W2793312879 @default.
- W2946598687 cites W2793802578 @default.
- W2946598687 cites W2949290395 @default.
- W2946598687 cites W2963334832 @default.
- W2946598687 cites W2963341661 @default.
- W2946598687 doi "https://doi.org/10.1007/978-3-030-19823-7_18" @default.
- W2946598687 hasPublicationYear "2019" @default.
- W2946598687 type Work @default.
- W2946598687 sameAs 2946598687 @default.
- W2946598687 citedByCount "2" @default.
- W2946598687 countsByYear W29465986872022 @default.
- W2946598687 crossrefType "book-chapter" @default.
- W2946598687 hasAuthorship W2946598687A5047405956 @default.
- W2946598687 hasAuthorship W2946598687A5051184401 @default.
- W2946598687 hasAuthorship W2946598687A5056469736 @default.
- W2946598687 hasAuthorship W2946598687A5073446393 @default.
- W2946598687 hasAuthorship W2946598687A5077852542 @default.
- W2946598687 hasBestOaLocation W29465986872 @default.
- W2946598687 hasConcept C117220453 @default.
- W2946598687 hasConcept C153180895 @default.
- W2946598687 hasConcept C154945302 @default.
- W2946598687 hasConcept C15744967 @default.
- W2946598687 hasConcept C169760540 @default.
- W2946598687 hasConcept C2524010 @default.
- W2946598687 hasConcept C26760741 @default.
- W2946598687 hasConcept C2779226451 @default.
- W2946598687 hasConcept C2779345533 @default.
- W2946598687 hasConcept C33923547 @default.
- W2946598687 hasConcept C41008148 @default.
- W2946598687 hasConcept C54170458 @default.
- W2946598687 hasConceptScore W2946598687C117220453 @default.
- W2946598687 hasConceptScore W2946598687C153180895 @default.
- W2946598687 hasConceptScore W2946598687C154945302 @default.
- W2946598687 hasConceptScore W2946598687C15744967 @default.
- W2946598687 hasConceptScore W2946598687C169760540 @default.
- W2946598687 hasConceptScore W2946598687C2524010 @default.
- W2946598687 hasConceptScore W2946598687C26760741 @default.
- W2946598687 hasConceptScore W2946598687C2779226451 @default.
- W2946598687 hasConceptScore W2946598687C2779345533 @default.
- W2946598687 hasConceptScore W2946598687C33923547 @default.
- W2946598687 hasConceptScore W2946598687C41008148 @default.
- W2946598687 hasConceptScore W2946598687C54170458 @default.
- W2946598687 hasLocation W29465986871 @default.
- W2946598687 hasLocation W29465986872 @default.
- W2946598687 hasLocation W29465986873 @default.
- W2946598687 hasOpenAccess W2946598687 @default.
- W2946598687 hasPrimaryLocation W29465986871 @default.
- W2946598687 hasRelatedWork W2013514379 @default.
- W2946598687 hasRelatedWork W2033712947 @default.
- W2946598687 hasRelatedWork W2091724545 @default.
- W2946598687 hasRelatedWork W2146691973 @default.
- W2946598687 hasRelatedWork W2338277732 @default.
- W2946598687 hasRelatedWork W2753174232 @default.
- W2946598687 hasRelatedWork W2950235777 @default.
- W2946598687 hasRelatedWork W4206076898 @default.
- W2946598687 hasRelatedWork W4281609291 @default.
- W2946598687 hasRelatedWork W2559504630 @default.
- W2946598687 isParatext "false" @default.
- W2946598687 isRetracted "false" @default.
- W2946598687 magId "2946598687" @default.
- W2946598687 workType "book-chapter" @default.