Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946670574> ?p ?o ?g. }
- W2946670574 endingPage "72" @default.
- W2946670574 startingPage "59" @default.
- W2946670574 abstract "With the pervasive use of smartphones, which contain numerous sensors, data for modeling human activity is readily available. Human activity recognition is an important area of research because it can be used in context-aware applications. It has significant influence in many other research areas and applications including healthcare, assisted living, personal fitness, and entertainment. There has been a widespread use of machine learning techniques in wearable and smartphone based human activity recognition. Despite being an active area of research for more than a decade, most of the existing approaches require extensive computation to extract feature, train model, and recognize activities. This study presents a computationally efficient smartphone based human activity recognizer, based on dynamical systems and chaos theory. A reconstructed phase space is formed from the accelerometer sensor data using time-delay embedding. A single accelerometer axis is used to reduce memory and computational complexity. A Gaussian mixture model is learned on the reconstructed phase space. A maximum likelihood classifier uses the Gaussian mixture model to classify ten different human activities and a baseline. One public and one collected dataset were used to validate the proposed approach. Data was collected from ten subjects. The public dataset contains data from 30 subjects. Out-of-sample experimental results show that the proposed approach is able to recognize human activities from smartphones’ one-axis raw accelerometer sensor data. The proposed approach achieved 100% accuracy for individual models across all activities and datasets. The proposed research requires 3 to 7 times less amount of data than the existing approaches to classify activities. It also requires 3 to 4 times less amount of time to build reconstructed phase space compare to time and frequency domain features. A comparative evaluation is also presented to compare proposed approach with the state-of-the-art works." @default.
- W2946670574 created "2019-05-29" @default.
- W2946670574 creator A5027244982 @default.
- W2946670574 creator A5032581358 @default.
- W2946670574 creator A5042506983 @default.
- W2946670574 creator A5060265487 @default.
- W2946670574 creator A5072644640 @default.
- W2946670574 creator A5080676206 @default.
- W2946670574 creator A5083618602 @default.
- W2946670574 date "2019-09-01" @default.
- W2946670574 modified "2023-10-02" @default.
- W2946670574 title "A light weight smartphone based human activity recognition system with high accuracy" @default.
- W2946670574 cites W1497385253 @default.
- W2946670574 cites W1507216665 @default.
- W2946670574 cites W1549386224 @default.
- W2946670574 cites W1967320926 @default.
- W2946670574 cites W1985690171 @default.
- W2946670574 cites W2003792585 @default.
- W2946670574 cites W2008311091 @default.
- W2946670574 cites W2017351764 @default.
- W2946670574 cites W2028782774 @default.
- W2946670574 cites W2029568429 @default.
- W2946670574 cites W2032581224 @default.
- W2946670574 cites W2038089898 @default.
- W2946670574 cites W2054780155 @default.
- W2946670574 cites W2084439158 @default.
- W2946670574 cites W2094481865 @default.
- W2946670574 cites W2103151433 @default.
- W2946670574 cites W2116245304 @default.
- W2946670574 cites W2137100320 @default.
- W2946670574 cites W2141018395 @default.
- W2946670574 cites W2150080215 @default.
- W2946670574 cites W2159694746 @default.
- W2946670574 cites W2195342085 @default.
- W2946670574 cites W2586050119 @default.
- W2946670574 cites W2754227086 @default.
- W2946670574 cites W2789868604 @default.
- W2946670574 cites W2791180050 @default.
- W2946670574 cites W3104887532 @default.
- W2946670574 cites W4239340087 @default.
- W2946670574 cites W4300672471 @default.
- W2946670574 doi "https://doi.org/10.1016/j.jnca.2019.05.001" @default.
- W2946670574 hasPublicationYear "2019" @default.
- W2946670574 type Work @default.
- W2946670574 sameAs 2946670574 @default.
- W2946670574 citedByCount "35" @default.
- W2946670574 countsByYear W29466705742019 @default.
- W2946670574 countsByYear W29466705742020 @default.
- W2946670574 countsByYear W29466705742021 @default.
- W2946670574 countsByYear W29466705742022 @default.
- W2946670574 countsByYear W29466705742023 @default.
- W2946670574 crossrefType "journal-article" @default.
- W2946670574 hasAuthorship W2946670574A5027244982 @default.
- W2946670574 hasAuthorship W2946670574A5032581358 @default.
- W2946670574 hasAuthorship W2946670574A5042506983 @default.
- W2946670574 hasAuthorship W2946670574A5060265487 @default.
- W2946670574 hasAuthorship W2946670574A5072644640 @default.
- W2946670574 hasAuthorship W2946670574A5080676206 @default.
- W2946670574 hasAuthorship W2946670574A5083618602 @default.
- W2946670574 hasBestOaLocation W29466705742 @default.
- W2946670574 hasConcept C111919701 @default.
- W2946670574 hasConcept C119857082 @default.
- W2946670574 hasConcept C121687571 @default.
- W2946670574 hasConcept C149635348 @default.
- W2946670574 hasConcept C150594956 @default.
- W2946670574 hasConcept C151730666 @default.
- W2946670574 hasConcept C153180895 @default.
- W2946670574 hasConcept C154945302 @default.
- W2946670574 hasConcept C2779343474 @default.
- W2946670574 hasConcept C29794715 @default.
- W2946670574 hasConcept C41008148 @default.
- W2946670574 hasConcept C54290928 @default.
- W2946670574 hasConcept C61224824 @default.
- W2946670574 hasConcept C86803240 @default.
- W2946670574 hasConcept C89805583 @default.
- W2946670574 hasConcept C95623464 @default.
- W2946670574 hasConceptScore W2946670574C111919701 @default.
- W2946670574 hasConceptScore W2946670574C119857082 @default.
- W2946670574 hasConceptScore W2946670574C121687571 @default.
- W2946670574 hasConceptScore W2946670574C149635348 @default.
- W2946670574 hasConceptScore W2946670574C150594956 @default.
- W2946670574 hasConceptScore W2946670574C151730666 @default.
- W2946670574 hasConceptScore W2946670574C153180895 @default.
- W2946670574 hasConceptScore W2946670574C154945302 @default.
- W2946670574 hasConceptScore W2946670574C2779343474 @default.
- W2946670574 hasConceptScore W2946670574C29794715 @default.
- W2946670574 hasConceptScore W2946670574C41008148 @default.
- W2946670574 hasConceptScore W2946670574C54290928 @default.
- W2946670574 hasConceptScore W2946670574C61224824 @default.
- W2946670574 hasConceptScore W2946670574C86803240 @default.
- W2946670574 hasConceptScore W2946670574C89805583 @default.
- W2946670574 hasConceptScore W2946670574C95623464 @default.
- W2946670574 hasFunder F4320335045 @default.
- W2946670574 hasFunder F4320337112 @default.
- W2946670574 hasLocation W29466705741 @default.
- W2946670574 hasLocation W29466705742 @default.
- W2946670574 hasOpenAccess W2946670574 @default.
- W2946670574 hasPrimaryLocation W29466705741 @default.