Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946682317> ?p ?o ?g. }
- W2946682317 endingPage "167" @default.
- W2946682317 startingPage "152" @default.
- W2946682317 abstract "The influence of heating followed by cooling on the alteration of the microstructural properties of Harcourt granite was comprehensively investigated utilising X-ray computed tomography (CT) imaging and three-dimensional (3-D) image reconstruction and analysis. Two cooling treatments, rapid and slow cooling, were adopted with preheating temperatures ranging from 25 to 1000 °C. The pore spaces of the thermally-treated specimens were analysed to obtain their porosity and pore connectivity and to generate pore network models (PNMs). According to the results, no significant microcracking occurs up to the preheating temperature of 200 °C and regardless of the cooling treatment, microcracks start to emerge from the outer boundary of the rock specimen at 300 °C during heating followed by cooling treatments. Further, coalescence of microcracks into broader intergranular cracks along feldspar, quartz and biotite grain boundaries was observed beyond 400 °C and intragranular cracks formed beyond 800 °C. Mineral stability analysis revealed considerable unstable deterioration of quartz and feldspar grains subjected to thermal stresses during heating and cooling processes, while biotite minerals showed more stable behaviour against thermal shock-induced microcracking. In addition, thermal microcracking-induced rock matrix deterioration was more significant in specimens subjected to rapid cooling compared to slow cooling, which is probably due to thermal shock-induced stress accumulation in the rapidly cooled rock matrix. Analysis of the local axis connectivity along the height of the rock specimens showed that most of the induced pores are interconnected in the specimens subjected to rapid cooling compared to the slowly cooled specimens. According to the results, no significant microcracking occurs up to the preheating temperature of 200 °C and regardless of the cooling treatment, microcracks start to emerge from the outer boundary of the rock specimen at 300 °C during heating followed by cooling treatments. Moreover, the range of the equivalent radii of the pores in the PNM widened from 1–2000 μm to 1–3300 μm, and from 1–1000 μm to 1–2700 μm with the increase of preheating temperature from 600 °C to 800 °C for rapidly cooled rock specimens and slowly cooled specimens, respectively. A similar phenomenon was observed for the equivalent radii of the throats in the PNM. At temperatures beyond 800 °C, regardless of the cooling treatment, more complex and extended pore networks tend to be formed inside the rock pore matrix due to thermal deterioration." @default.
- W2946682317 created "2019-05-29" @default.
- W2946682317 creator A5034564163 @default.
- W2946682317 creator A5039571177 @default.
- W2946682317 creator A5049425101 @default.
- W2946682317 creator A5067331882 @default.
- W2946682317 creator A5086222657 @default.
- W2946682317 date "2019-09-01" @default.
- W2946682317 modified "2023-10-13" @default.
- W2946682317 title "Quantification of thermally-induced microcracks in granite using X-ray CT imaging and analysis" @default.
- W2946682317 cites W1133525133 @default.
- W2946682317 cites W1966212282 @default.
- W2946682317 cites W1971036973 @default.
- W2946682317 cites W1973888660 @default.
- W2946682317 cites W1980447427 @default.
- W2946682317 cites W1988903143 @default.
- W2946682317 cites W1995384475 @default.
- W2946682317 cites W2001661336 @default.
- W2946682317 cites W2001773045 @default.
- W2946682317 cites W2003787914 @default.
- W2946682317 cites W2004489615 @default.
- W2946682317 cites W2006420515 @default.
- W2946682317 cites W2006493549 @default.
- W2946682317 cites W2022121311 @default.
- W2946682317 cites W2023342679 @default.
- W2946682317 cites W2023888385 @default.
- W2946682317 cites W2024592495 @default.
- W2946682317 cites W2033232503 @default.
- W2946682317 cites W2035046766 @default.
- W2946682317 cites W2036566334 @default.
- W2946682317 cites W2040505957 @default.
- W2946682317 cites W2041174390 @default.
- W2946682317 cites W2054746210 @default.
- W2946682317 cites W2064245937 @default.
- W2946682317 cites W2065654534 @default.
- W2946682317 cites W2070209116 @default.
- W2946682317 cites W2072456898 @default.
- W2946682317 cites W2075632252 @default.
- W2946682317 cites W2081920970 @default.
- W2946682317 cites W2087134426 @default.
- W2946682317 cites W2091975395 @default.
- W2946682317 cites W2094651590 @default.
- W2946682317 cites W2103289420 @default.
- W2946682317 cites W2108858802 @default.
- W2946682317 cites W2111415940 @default.
- W2946682317 cites W2114123293 @default.
- W2946682317 cites W2141173661 @default.
- W2946682317 cites W2144382784 @default.
- W2946682317 cites W2145262343 @default.
- W2946682317 cites W2157812230 @default.
- W2946682317 cites W2166538457 @default.
- W2946682317 cites W2169383939 @default.
- W2946682317 cites W2195574927 @default.
- W2946682317 cites W2212583644 @default.
- W2946682317 cites W2226710786 @default.
- W2946682317 cites W2510068103 @default.
- W2946682317 cites W2510860592 @default.
- W2946682317 cites W2529243395 @default.
- W2946682317 cites W2543447712 @default.
- W2946682317 cites W2576460438 @default.
- W2946682317 cites W2590297493 @default.
- W2946682317 cites W2594049381 @default.
- W2946682317 cites W2601888131 @default.
- W2946682317 cites W2604605183 @default.
- W2946682317 cites W2609980703 @default.
- W2946682317 cites W2672504660 @default.
- W2946682317 cites W2737176374 @default.
- W2946682317 cites W2741164838 @default.
- W2946682317 cites W2754168562 @default.
- W2946682317 cites W2771532481 @default.
- W2946682317 cites W2773986984 @default.
- W2946682317 cites W2803920136 @default.
- W2946682317 cites W2804800641 @default.
- W2946682317 cites W2887799681 @default.
- W2946682317 cites W2904460391 @default.
- W2946682317 cites W2908335323 @default.
- W2946682317 cites W4246508957 @default.
- W2946682317 doi "https://doi.org/10.1016/j.geothermics.2019.04.007" @default.
- W2946682317 hasPublicationYear "2019" @default.
- W2946682317 type Work @default.
- W2946682317 sameAs 2946682317 @default.
- W2946682317 citedByCount "42" @default.
- W2946682317 countsByYear W29466823172019 @default.
- W2946682317 countsByYear W29466823172020 @default.
- W2946682317 countsByYear W29466823172021 @default.
- W2946682317 countsByYear W29466823172022 @default.
- W2946682317 countsByYear W29466823172023 @default.
- W2946682317 crossrefType "journal-article" @default.
- W2946682317 hasAuthorship W2946682317A5034564163 @default.
- W2946682317 hasAuthorship W2946682317A5039571177 @default.
- W2946682317 hasAuthorship W2946682317A5049425101 @default.
- W2946682317 hasAuthorship W2946682317A5067331882 @default.
- W2946682317 hasAuthorship W2946682317A5086222657 @default.
- W2946682317 hasConcept C121332964 @default.
- W2946682317 hasConcept C127313418 @default.
- W2946682317 hasConcept C149792144 @default.
- W2946682317 hasConcept C153294291 @default.
- W2946682317 hasConcept C159985019 @default.