Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946730462> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2946730462 endingPage "5406" @default.
- W2946730462 startingPage "5397" @default.
- W2946730462 abstract "Nowadays, development in machine vision incorporated with artificial intelligence surpasses the ability of human intelligence and its application expands exponentially with the increasing number of electronic gadgets in our day-to-day life. The explosive revolution in multimedia research leads to the need for expanding the utility of texts in a machine vision environment to promote web search operation. Hence, extracting text from images forms the core aspect of information retrieval-based intelligent system. This article is aimed towards extracting text from unconstrained environments. Here, the significance of the CIE-Lab colour space is analysed over text localisation assisted through Renyi entropy-based thresholding. The proposed algorithm is tested on the MSRA Text Detection 500 dataset (MSRA-TD500) and Street View Text (SVT) datasets, which are challenging datasets. Authors’ proposed Renyi entropy-based text localisation algorithm is successful in identifying blurred texts, texts with different font characteristics and multi-lingual texts with manifold orientations from complex background natural scenes." @default.
- W2946730462 created "2019-05-29" @default.
- W2946730462 creator A5004372623 @default.
- W2946730462 creator A5050874296 @default.
- W2946730462 date "2019-05-17" @default.
- W2946730462 modified "2023-09-27" @default.
- W2946730462 title "Text extraction from natural scene images using Renyi entropy" @default.
- W2946730462 cites W1972774730 @default.
- W2946730462 cites W1975035929 @default.
- W2946730462 cites W1988461287 @default.
- W2946730462 cites W1999284580 @default.
- W2946730462 cites W2000037265 @default.
- W2946730462 cites W2014286161 @default.
- W2946730462 cites W2019478948 @default.
- W2946730462 cites W2019995264 @default.
- W2946730462 cites W2024746652 @default.
- W2946730462 cites W2025859578 @default.
- W2946730462 cites W2067943751 @default.
- W2946730462 cites W2072610025 @default.
- W2946730462 cites W2078997308 @default.
- W2946730462 cites W2083970667 @default.
- W2946730462 cites W2101496652 @default.
- W2946730462 cites W2104946622 @default.
- W2946730462 cites W2114921207 @default.
- W2946730462 cites W2124404372 @default.
- W2946730462 cites W2128060444 @default.
- W2946730462 cites W2128854450 @default.
- W2946730462 cites W2133059825 @default.
- W2946730462 cites W2142159465 @default.
- W2946730462 cites W2148214126 @default.
- W2946730462 cites W2161098282 @default.
- W2946730462 cites W2166949156 @default.
- W2946730462 cites W2278445594 @default.
- W2946730462 cites W2511850448 @default.
- W2946730462 cites W2592755052 @default.
- W2946730462 cites W4300028322 @default.
- W2946730462 cites W654550266 @default.
- W2946730462 cites W819804394 @default.
- W2946730462 doi "https://doi.org/10.1049/joe.2018.5160" @default.
- W2946730462 hasPublicationYear "2019" @default.
- W2946730462 type Work @default.
- W2946730462 sameAs 2946730462 @default.
- W2946730462 citedByCount "5" @default.
- W2946730462 countsByYear W29467304622021 @default.
- W2946730462 countsByYear W29467304622022 @default.
- W2946730462 countsByYear W29467304622023 @default.
- W2946730462 crossrefType "journal-article" @default.
- W2946730462 hasAuthorship W2946730462A5004372623 @default.
- W2946730462 hasAuthorship W2946730462A5050874296 @default.
- W2946730462 hasBestOaLocation W29467304621 @default.
- W2946730462 hasConcept C106301342 @default.
- W2946730462 hasConcept C115961682 @default.
- W2946730462 hasConcept C119857082 @default.
- W2946730462 hasConcept C121332964 @default.
- W2946730462 hasConcept C142611142 @default.
- W2946730462 hasConcept C153180895 @default.
- W2946730462 hasConcept C154945302 @default.
- W2946730462 hasConcept C191178318 @default.
- W2946730462 hasConcept C23123220 @default.
- W2946730462 hasConcept C41008148 @default.
- W2946730462 hasConcept C62520636 @default.
- W2946730462 hasConcept C9679016 @default.
- W2946730462 hasConceptScore W2946730462C106301342 @default.
- W2946730462 hasConceptScore W2946730462C115961682 @default.
- W2946730462 hasConceptScore W2946730462C119857082 @default.
- W2946730462 hasConceptScore W2946730462C121332964 @default.
- W2946730462 hasConceptScore W2946730462C142611142 @default.
- W2946730462 hasConceptScore W2946730462C153180895 @default.
- W2946730462 hasConceptScore W2946730462C154945302 @default.
- W2946730462 hasConceptScore W2946730462C191178318 @default.
- W2946730462 hasConceptScore W2946730462C23123220 @default.
- W2946730462 hasConceptScore W2946730462C41008148 @default.
- W2946730462 hasConceptScore W2946730462C62520636 @default.
- W2946730462 hasConceptScore W2946730462C9679016 @default.
- W2946730462 hasIssue "8" @default.
- W2946730462 hasLocation W29467304621 @default.
- W2946730462 hasLocation W29467304622 @default.
- W2946730462 hasOpenAccess W2946730462 @default.
- W2946730462 hasPrimaryLocation W29467304621 @default.
- W2946730462 hasRelatedWork W1518605196 @default.
- W2946730462 hasRelatedWork W1987087490 @default.
- W2946730462 hasRelatedWork W2033000528 @default.
- W2946730462 hasRelatedWork W2139170796 @default.
- W2946730462 hasRelatedWork W2387707050 @default.
- W2946730462 hasRelatedWork W2754193743 @default.
- W2946730462 hasRelatedWork W2792520941 @default.
- W2946730462 hasRelatedWork W3175271736 @default.
- W2946730462 hasRelatedWork W4296440517 @default.
- W2946730462 hasRelatedWork W2285776971 @default.
- W2946730462 hasVolume "2019" @default.
- W2946730462 isParatext "false" @default.
- W2946730462 isRetracted "false" @default.
- W2946730462 magId "2946730462" @default.
- W2946730462 workType "article" @default.