Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946747211> ?p ?o ?g. }
- W2946747211 endingPage "1881" @default.
- W2946747211 startingPage "1866" @default.
- W2946747211 abstract "Deep convolutional neural networks (CNN) have led to a successful breakthrough for hyperspectral image (HSI) classification. In this paper, a CNN system embedded with an extracted hashing feature is proposed for HSI classification that utilizes the semantic information of the HSI. First, a series of hash functions are constructed to enhance the presentation of the locality and discriminability of classes. Then, the sparse binary hash codes calculated by the discriminative learning algorithm are combined into the original HSI. Next, we design a CNN framework with seven hidden layers to obtain the hierarchical feature maps with both spectral and spatial information for classification. A deconvolution layer aims to improve the robustness of the proposed CNN network and is used to enhance the expression of deep features. The proposed CNN classification architecture achieves powerful distinguishing ability from different classes. The extensive experiments on real hyperspectral images results demonstrate that the proposed CNN network can effectively improve the classification accuracy after the embedding of the extracted semantic features." @default.
- W2946747211 created "2019-05-29" @default.
- W2946747211 creator A5001303812 @default.
- W2946747211 creator A5012732769 @default.
- W2946747211 creator A5012832003 @default.
- W2946747211 creator A5026317865 @default.
- W2946747211 creator A5035062653 @default.
- W2946747211 creator A5060155676 @default.
- W2946747211 creator A5073412670 @default.
- W2946747211 date "2019-06-01" @default.
- W2946747211 modified "2023-10-15" @default.
- W2946747211 title "Hyperspectral Image Classification Method Based on CNN Architecture Embedding With Hashing Semantic Feature" @default.
- W2946747211 cites W1974981350 @default.
- W2946747211 cites W2005106632 @default.
- W2946747211 cites W2089666662 @default.
- W2946747211 cites W2136251662 @default.
- W2946747211 cites W2162006472 @default.
- W2946747211 cites W2171171329 @default.
- W2946747211 cites W2294445779 @default.
- W2946747211 cites W2314785379 @default.
- W2946747211 cites W2316226477 @default.
- W2946747211 cites W2323917763 @default.
- W2946747211 cites W2345128667 @default.
- W2946747211 cites W2508457857 @default.
- W2946747211 cites W2519653196 @default.
- W2946747211 cites W2533102868 @default.
- W2946747211 cites W2620858446 @default.
- W2946747211 cites W2658954079 @default.
- W2946747211 cites W2759518055 @default.
- W2946747211 cites W2765824781 @default.
- W2946747211 cites W2770315464 @default.
- W2946747211 cites W2770344288 @default.
- W2946747211 cites W2772762696 @default.
- W2946747211 cites W2792332881 @default.
- W2946747211 cites W2793775504 @default.
- W2946747211 cites W2800371750 @default.
- W2946747211 cites W2804902458 @default.
- W2946747211 cites W2889861425 @default.
- W2946747211 cites W2915062141 @default.
- W2946747211 cites W2919115771 @default.
- W2946747211 cites W3100245404 @default.
- W2946747211 cites W3103753223 @default.
- W2946747211 cites W3104354356 @default.
- W2946747211 cites W3104725225 @default.
- W2946747211 cites W4240485910 @default.
- W2946747211 doi "https://doi.org/10.1109/jstars.2019.2911987" @default.
- W2946747211 hasPublicationYear "2019" @default.
- W2946747211 type Work @default.
- W2946747211 sameAs 2946747211 @default.
- W2946747211 citedByCount "61" @default.
- W2946747211 countsByYear W29467472112019 @default.
- W2946747211 countsByYear W29467472112020 @default.
- W2946747211 countsByYear W29467472112021 @default.
- W2946747211 countsByYear W29467472112022 @default.
- W2946747211 countsByYear W29467472112023 @default.
- W2946747211 crossrefType "journal-article" @default.
- W2946747211 hasAuthorship W2946747211A5001303812 @default.
- W2946747211 hasAuthorship W2946747211A5012732769 @default.
- W2946747211 hasAuthorship W2946747211A5012832003 @default.
- W2946747211 hasAuthorship W2946747211A5026317865 @default.
- W2946747211 hasAuthorship W2946747211A5035062653 @default.
- W2946747211 hasAuthorship W2946747211A5060155676 @default.
- W2946747211 hasAuthorship W2946747211A5073412670 @default.
- W2946747211 hasConcept C138885662 @default.
- W2946747211 hasConcept C153180895 @default.
- W2946747211 hasConcept C154945302 @default.
- W2946747211 hasConcept C159078339 @default.
- W2946747211 hasConcept C2776401178 @default.
- W2946747211 hasConcept C38652104 @default.
- W2946747211 hasConcept C41008148 @default.
- W2946747211 hasConcept C41608201 @default.
- W2946747211 hasConcept C41895202 @default.
- W2946747211 hasConcept C52622490 @default.
- W2946747211 hasConcept C67388219 @default.
- W2946747211 hasConcept C99138194 @default.
- W2946747211 hasConceptScore W2946747211C138885662 @default.
- W2946747211 hasConceptScore W2946747211C153180895 @default.
- W2946747211 hasConceptScore W2946747211C154945302 @default.
- W2946747211 hasConceptScore W2946747211C159078339 @default.
- W2946747211 hasConceptScore W2946747211C2776401178 @default.
- W2946747211 hasConceptScore W2946747211C38652104 @default.
- W2946747211 hasConceptScore W2946747211C41008148 @default.
- W2946747211 hasConceptScore W2946747211C41608201 @default.
- W2946747211 hasConceptScore W2946747211C41895202 @default.
- W2946747211 hasConceptScore W2946747211C52622490 @default.
- W2946747211 hasConceptScore W2946747211C67388219 @default.
- W2946747211 hasConceptScore W2946747211C99138194 @default.
- W2946747211 hasFunder F4320321001 @default.
- W2946747211 hasFunder F4320321978 @default.
- W2946747211 hasFunder F4320323086 @default.
- W2946747211 hasIssue "6" @default.
- W2946747211 hasLocation W29467472111 @default.
- W2946747211 hasOpenAccess W2946747211 @default.
- W2946747211 hasPrimaryLocation W29467472111 @default.
- W2946747211 hasRelatedWork W2016461833 @default.
- W2946747211 hasRelatedWork W2018257962 @default.
- W2946747211 hasRelatedWork W2189927203 @default.
- W2946747211 hasRelatedWork W2775464024 @default.