Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946751505> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2946751505 endingPage "99" @default.
- W2946751505 startingPage "89" @default.
- W2946751505 abstract "A drug-drug interaction(DDI) was defined as the pharmacological effect(s) of a drug influenced by another drug. The positive DDIs can improve the therapeutic effect of patients. However, the negative DDIs can lead serious results, such as drug withdrawal from market and even patient death. Currently, multiple pharmaceutical drugs have widely been used to treat complex diseases, such as cancer. The traditional biomedical experiments are very time-consuming and very costly to validate new DDIs. Therefore, it is appealing to develop computational methods to discover potential DDIs. In this study, we propose a new computational method (called IDNDDI) to predict novel DDIs. Based on the binary vector of drug chemical, biological and phenotype data, IDNDDI computes the integrated drug feature similarity by the cosine similarity method. In addition, the node-based drug network diffusion method is used to calculate the relational initial scores for new drugs. To systematically evaluate the prediction performance of IDNDDI and compare it with other prediction methods, we conduct the 5-fold cross validation and de novo drug validation. In terms of the AUC (area under the ROC curve)value, IDNDDI achieves the better prediction performance in the 5-fold cross validation, specifically, the AUC value is 0.9691, which is larger than the state-of-the-art L1E (L1 Classifier ensemble method) results of 0.9570. In addition, IDNDDI also obtains the best prediction result in the de novo drug validation and the AUC reaches 0.9292. The prediction ability in application of our method is also illustrated by case studies. IDNDDI is an effective DDI prediction method which can help to reduce adverse drug reactions and improve the efficiency of drug development progress." @default.
- W2946751505 created "2019-05-29" @default.
- W2946751505 creator A5006718110 @default.
- W2946751505 creator A5016800283 @default.
- W2946751505 creator A5026877800 @default.
- W2946751505 creator A5038582529 @default.
- W2946751505 creator A5074706280 @default.
- W2946751505 creator A5091157395 @default.
- W2946751505 date "2019-01-01" @default.
- W2946751505 modified "2023-09-23" @default.
- W2946751505 title "IDNDDI: An Integrated Drug Similarity Network Method for Predicting Drug-Drug Interactions" @default.
- W2946751505 cites W1018047830 @default.
- W2946751505 cites W2013181441 @default.
- W2946751505 cites W2018518196 @default.
- W2946751505 cites W2044372469 @default.
- W2946751505 cites W2091439417 @default.
- W2946751505 cites W2096439168 @default.
- W2946751505 cites W2106029302 @default.
- W2946751505 cites W2109482131 @default.
- W2946751505 cites W2117397379 @default.
- W2946751505 cites W2119002393 @default.
- W2946751505 cites W2570516417 @default.
- W2946751505 cites W2570972025 @default.
- W2946751505 cites W2771019114 @default.
- W2946751505 cites W2772005301 @default.
- W2946751505 doi "https://doi.org/10.1007/978-3-030-20242-2_8" @default.
- W2946751505 hasPublicationYear "2019" @default.
- W2946751505 type Work @default.
- W2946751505 sameAs 2946751505 @default.
- W2946751505 citedByCount "6" @default.
- W2946751505 countsByYear W29467515052019 @default.
- W2946751505 countsByYear W29467515052022 @default.
- W2946751505 countsByYear W29467515052023 @default.
- W2946751505 crossrefType "book-chapter" @default.
- W2946751505 hasAuthorship W2946751505A5006718110 @default.
- W2946751505 hasAuthorship W2946751505A5016800283 @default.
- W2946751505 hasAuthorship W2946751505A5026877800 @default.
- W2946751505 hasAuthorship W2946751505A5038582529 @default.
- W2946751505 hasAuthorship W2946751505A5074706280 @default.
- W2946751505 hasAuthorship W2946751505A5091157395 @default.
- W2946751505 hasConcept C103278499 @default.
- W2946751505 hasConcept C103637391 @default.
- W2946751505 hasConcept C115961682 @default.
- W2946751505 hasConcept C119857082 @default.
- W2946751505 hasConcept C12267149 @default.
- W2946751505 hasConcept C124101348 @default.
- W2946751505 hasConcept C153180895 @default.
- W2946751505 hasConcept C154945302 @default.
- W2946751505 hasConcept C27181475 @default.
- W2946751505 hasConcept C2780035454 @default.
- W2946751505 hasConcept C2780762811 @default.
- W2946751505 hasConcept C2910466267 @default.
- W2946751505 hasConcept C41008148 @default.
- W2946751505 hasConcept C66905080 @default.
- W2946751505 hasConcept C71924100 @default.
- W2946751505 hasConcept C95623464 @default.
- W2946751505 hasConcept C98274493 @default.
- W2946751505 hasConceptScore W2946751505C103278499 @default.
- W2946751505 hasConceptScore W2946751505C103637391 @default.
- W2946751505 hasConceptScore W2946751505C115961682 @default.
- W2946751505 hasConceptScore W2946751505C119857082 @default.
- W2946751505 hasConceptScore W2946751505C12267149 @default.
- W2946751505 hasConceptScore W2946751505C124101348 @default.
- W2946751505 hasConceptScore W2946751505C153180895 @default.
- W2946751505 hasConceptScore W2946751505C154945302 @default.
- W2946751505 hasConceptScore W2946751505C27181475 @default.
- W2946751505 hasConceptScore W2946751505C2780035454 @default.
- W2946751505 hasConceptScore W2946751505C2780762811 @default.
- W2946751505 hasConceptScore W2946751505C2910466267 @default.
- W2946751505 hasConceptScore W2946751505C41008148 @default.
- W2946751505 hasConceptScore W2946751505C66905080 @default.
- W2946751505 hasConceptScore W2946751505C71924100 @default.
- W2946751505 hasConceptScore W2946751505C95623464 @default.
- W2946751505 hasConceptScore W2946751505C98274493 @default.
- W2946751505 hasLocation W29467515051 @default.
- W2946751505 hasOpenAccess W2946751505 @default.
- W2946751505 hasPrimaryLocation W29467515051 @default.
- W2946751505 hasRelatedWork W1980001478 @default.
- W2946751505 hasRelatedWork W1996541855 @default.
- W2946751505 hasRelatedWork W2381587904 @default.
- W2946751505 hasRelatedWork W2438464946 @default.
- W2946751505 hasRelatedWork W2556319748 @default.
- W2946751505 hasRelatedWork W2946751505 @default.
- W2946751505 hasRelatedWork W3080261722 @default.
- W2946751505 hasRelatedWork W3195168932 @default.
- W2946751505 hasRelatedWork W3215867059 @default.
- W2946751505 hasRelatedWork W4205288553 @default.
- W2946751505 isParatext "false" @default.
- W2946751505 isRetracted "false" @default.
- W2946751505 magId "2946751505" @default.
- W2946751505 workType "book-chapter" @default.