Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946898483> ?p ?o ?g. }
- W2946898483 endingPage "121279" @default.
- W2946898483 startingPage "121279" @default.
- W2946898483 abstract "Many networks in society and nature are dynamic, and identifying evolving communities in dynamic networks sheds light on revealing the structure and function of the overall systems. Evolutionary clustering is based on the temporal smoothness framework that simultaneously maximizes the clustering accuracy at the current time step and minimizes the clustering drift between two successive time steps. However, they are criticized for the linear combination of networks at two successive time steps because the relation between networks is unnecessary linear. To address this problem, we propose the Graph regularized Evolutionary Nonnegative Matrix Factorization algorithm (GrENMF) for the dynamic community detection, where the network at the previous time step is transformed as a regularizer into the objective function. Moreover, the local topological structure in the network at the previous time step is preserved in communities at the current time step, which improves the performance of algorithm without increasing the time complexity. Furthermore, we prove the equivalence among evolutionary nonnegative matrix factorization (ENMF), spectral clustering, kernel K-means, modularity density and GrENMF, which serves as the theoretical foundation for the GrENMF algorithm. The experimental results over a number of artificial and real world dynamic networks illustrate that the proposed method is not only more accurate, but also more robust than state-of-the-art approaches." @default.
- W2946898483 created "2019-06-07" @default.
- W2946898483 creator A5025209912 @default.
- W2946898483 creator A5029088205 @default.
- W2946898483 creator A5038726842 @default.
- W2946898483 creator A5047165324 @default.
- W2946898483 date "2019-09-01" @default.
- W2946898483 modified "2023-10-02" @default.
- W2946898483 title "Detecting evolving communities in dynamic networks using graph regularized evolutionary nonnegative matrix factorization" @default.
- W2946898483 cites W1902027874 @default.
- W2946898483 cites W1930572491 @default.
- W2946898483 cites W1931400479 @default.
- W2946898483 cites W1970225139 @default.
- W2946898483 cites W1971421925 @default.
- W2946898483 cites W2003539563 @default.
- W2946898483 cites W2015583498 @default.
- W2946898483 cites W2016360721 @default.
- W2946898483 cites W2022651954 @default.
- W2946898483 cites W2026493302 @default.
- W2946898483 cites W2046598510 @default.
- W2946898483 cites W2074617510 @default.
- W2946898483 cites W2078765398 @default.
- W2946898483 cites W2079460424 @default.
- W2946898483 cites W2082380642 @default.
- W2946898483 cites W2086805702 @default.
- W2946898483 cites W2092124750 @default.
- W2946898483 cites W2099982459 @default.
- W2946898483 cites W2103017472 @default.
- W2946898483 cites W2108119513 @default.
- W2946898483 cites W2127310925 @default.
- W2946898483 cites W2128366083 @default.
- W2946898483 cites W2138003801 @default.
- W2946898483 cites W2143197507 @default.
- W2946898483 cites W2146913572 @default.
- W2946898483 cites W2151936673 @default.
- W2946898483 cites W2164945240 @default.
- W2946898483 cites W2315452447 @default.
- W2946898483 cites W2375070860 @default.
- W2946898483 cites W2551318299 @default.
- W2946898483 cites W2580917121 @default.
- W2946898483 cites W2650688300 @default.
- W2946898483 cites W2751968371 @default.
- W2946898483 cites W2762183128 @default.
- W2946898483 cites W2777190022 @default.
- W2946898483 cites W2783382315 @default.
- W2946898483 cites W2802815569 @default.
- W2946898483 cites W3037819556 @default.
- W2946898483 cites W3125626040 @default.
- W2946898483 cites W629558026 @default.
- W2946898483 cites W634486302 @default.
- W2946898483 doi "https://doi.org/10.1016/j.physa.2019.121279" @default.
- W2946898483 hasPublicationYear "2019" @default.
- W2946898483 type Work @default.
- W2946898483 sameAs 2946898483 @default.
- W2946898483 citedByCount "8" @default.
- W2946898483 countsByYear W29468984832020 @default.
- W2946898483 countsByYear W29468984832021 @default.
- W2946898483 countsByYear W29468984832022 @default.
- W2946898483 crossrefType "journal-article" @default.
- W2946898483 hasAuthorship W2946898483A5025209912 @default.
- W2946898483 hasAuthorship W2946898483A5029088205 @default.
- W2946898483 hasAuthorship W2946898483A5038726842 @default.
- W2946898483 hasAuthorship W2946898483A5047165324 @default.
- W2946898483 hasConcept C105611402 @default.
- W2946898483 hasConcept C11413529 @default.
- W2946898483 hasConcept C121332964 @default.
- W2946898483 hasConcept C132525143 @default.
- W2946898483 hasConcept C152671427 @default.
- W2946898483 hasConcept C154945302 @default.
- W2946898483 hasConcept C158693339 @default.
- W2946898483 hasConcept C159149176 @default.
- W2946898483 hasConcept C207002847 @default.
- W2946898483 hasConcept C2779478453 @default.
- W2946898483 hasConcept C33923547 @default.
- W2946898483 hasConcept C41008148 @default.
- W2946898483 hasConcept C42355184 @default.
- W2946898483 hasConcept C54355233 @default.
- W2946898483 hasConcept C62520636 @default.
- W2946898483 hasConcept C73555534 @default.
- W2946898483 hasConcept C80444323 @default.
- W2946898483 hasConcept C86803240 @default.
- W2946898483 hasConceptScore W2946898483C105611402 @default.
- W2946898483 hasConceptScore W2946898483C11413529 @default.
- W2946898483 hasConceptScore W2946898483C121332964 @default.
- W2946898483 hasConceptScore W2946898483C132525143 @default.
- W2946898483 hasConceptScore W2946898483C152671427 @default.
- W2946898483 hasConceptScore W2946898483C154945302 @default.
- W2946898483 hasConceptScore W2946898483C158693339 @default.
- W2946898483 hasConceptScore W2946898483C159149176 @default.
- W2946898483 hasConceptScore W2946898483C207002847 @default.
- W2946898483 hasConceptScore W2946898483C2779478453 @default.
- W2946898483 hasConceptScore W2946898483C33923547 @default.
- W2946898483 hasConceptScore W2946898483C41008148 @default.
- W2946898483 hasConceptScore W2946898483C42355184 @default.
- W2946898483 hasConceptScore W2946898483C54355233 @default.
- W2946898483 hasConceptScore W2946898483C62520636 @default.
- W2946898483 hasConceptScore W2946898483C73555534 @default.
- W2946898483 hasConceptScore W2946898483C80444323 @default.