Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946949757> ?p ?o ?g. }
- W2946949757 abstract "This paper introduces the Differentiable Algorithm Network (DAN), a composable architecture for robot learning systems. A DAN is composed of neural network modules, each encoding a differentiable robot algorithm and an associated model; and it is trained end-to-end from data. DAN combines the strengths of model-driven modular system design and data-driven end-to-end learning. The algorithms and models act as structural assumptions to reduce the data requirements for learning; end-to-end learning allows the modules to adapt to one another and compensate for imperfect models and algorithms, in order to achieve the best overall system performance. We illustrate the DAN methodology through a case study on a simulated robot system, which learns to navigate in complex 3-D environments with only local visual observations and an image of a partially correct 2-D floor map." @default.
- W2946949757 created "2019-06-07" @default.
- W2946949757 creator A5012862284 @default.
- W2946949757 creator A5063238208 @default.
- W2946949757 creator A5069739104 @default.
- W2946949757 creator A5070680688 @default.
- W2946949757 creator A5071864357 @default.
- W2946949757 creator A5082344124 @default.
- W2946949757 date "2019-05-28" @default.
- W2946949757 modified "2023-09-27" @default.
- W2946949757 title "Differentiable Algorithm Networks for Composable Robot Learning" @default.
- W2946949757 cites W1136193735 @default.
- W2946949757 cites W1539216098 @default.
- W2946949757 cites W1646152356 @default.
- W2946949757 cites W1973749650 @default.
- W2946949757 cites W2002201291 @default.
- W2946949757 cites W2099430963 @default.
- W2946949757 cites W2112796928 @default.
- W2946949757 cites W2115008305 @default.
- W2946949757 cites W2123845384 @default.
- W2946949757 cites W2140135625 @default.
- W2946949757 cites W2150839555 @default.
- W2946949757 cites W2154844948 @default.
- W2946949757 cites W2163605009 @default.
- W2946949757 cites W2258731934 @default.
- W2946949757 cites W2336416123 @default.
- W2946949757 cites W2341171179 @default.
- W2946949757 cites W2404689820 @default.
- W2946949757 cites W2600030077 @default.
- W2946949757 cites W2732671178 @default.
- W2946949757 cites W2751499916 @default.
- W2946949757 cites W2752814746 @default.
- W2946949757 cites W2788071227 @default.
- W2946949757 cites W2795756076 @default.
- W2946949757 cites W2884565639 @default.
- W2946949757 cites W2885163910 @default.
- W2946949757 cites W2885596080 @default.
- W2946949757 cites W2890960027 @default.
- W2946949757 cites W2903195746 @default.
- W2946949757 cites W2904746163 @default.
- W2946949757 cites W2905364877 @default.
- W2946949757 cites W2938253611 @default.
- W2946949757 cites W2950872548 @default.
- W2946949757 cites W2951043689 @default.
- W2946949757 cites W2952791429 @default.
- W2946949757 cites W2953084784 @default.
- W2946949757 cites W2953249127 @default.
- W2946949757 cites W2962865140 @default.
- W2946949757 cites W2962893898 @default.
- W2946949757 cites W2963102369 @default.
- W2946949757 cites W2963371290 @default.
- W2946949757 cites W2963414638 @default.
- W2946949757 cites W2963714390 @default.
- W2946949757 cites W2963755523 @default.
- W2946949757 cites W2963970238 @default.
- W2946949757 cites W2964112890 @default.
- W2946949757 cites W2964220198 @default.
- W2946949757 cites W2964295739 @default.
- W2946949757 cites W3136620014 @default.
- W2946949757 cites W3212743282 @default.
- W2946949757 hasPublicationYear "2019" @default.
- W2946949757 type Work @default.
- W2946949757 sameAs 2946949757 @default.
- W2946949757 citedByCount "12" @default.
- W2946949757 countsByYear W29469497572019 @default.
- W2946949757 countsByYear W29469497572020 @default.
- W2946949757 countsByYear W29469497572021 @default.
- W2946949757 crossrefType "posted-content" @default.
- W2946949757 hasAuthorship W2946949757A5012862284 @default.
- W2946949757 hasAuthorship W2946949757A5063238208 @default.
- W2946949757 hasAuthorship W2946949757A5069739104 @default.
- W2946949757 hasAuthorship W2946949757A5070680688 @default.
- W2946949757 hasAuthorship W2946949757A5071864357 @default.
- W2946949757 hasAuthorship W2946949757A5082344124 @default.
- W2946949757 hasConcept C101468663 @default.
- W2946949757 hasConcept C111919701 @default.
- W2946949757 hasConcept C11413529 @default.
- W2946949757 hasConcept C125411270 @default.
- W2946949757 hasConcept C134306372 @default.
- W2946949757 hasConcept C138885662 @default.
- W2946949757 hasConcept C154945302 @default.
- W2946949757 hasConcept C202615002 @default.
- W2946949757 hasConcept C2780310539 @default.
- W2946949757 hasConcept C33923547 @default.
- W2946949757 hasConcept C41008148 @default.
- W2946949757 hasConcept C41895202 @default.
- W2946949757 hasConcept C50644808 @default.
- W2946949757 hasConcept C90509273 @default.
- W2946949757 hasConceptScore W2946949757C101468663 @default.
- W2946949757 hasConceptScore W2946949757C111919701 @default.
- W2946949757 hasConceptScore W2946949757C11413529 @default.
- W2946949757 hasConceptScore W2946949757C125411270 @default.
- W2946949757 hasConceptScore W2946949757C134306372 @default.
- W2946949757 hasConceptScore W2946949757C138885662 @default.
- W2946949757 hasConceptScore W2946949757C154945302 @default.
- W2946949757 hasConceptScore W2946949757C202615002 @default.
- W2946949757 hasConceptScore W2946949757C2780310539 @default.
- W2946949757 hasConceptScore W2946949757C33923547 @default.
- W2946949757 hasConceptScore W2946949757C41008148 @default.
- W2946949757 hasConceptScore W2946949757C41895202 @default.