Matches in SemOpenAlex for { <https://semopenalex.org/work/W2946952196> ?p ?o ?g. }
- W2946952196 endingPage "3166" @default.
- W2946952196 startingPage "3157" @default.
- W2946952196 abstract "As microRNAs (miRNAs) have been reported to be a type of novel high-value small molecule (SM) drug targets for disease treatments, many researchers are engaged in the field of exploring new SM–miRNA associations. Nevertheless, because of the high cost, adopting traditional biological experiments constrains the efficiency of discovering new associations between SMs and miRNAs. Therefore, as an important auxiliary tool, reliable computational models will be of great help to reveal SM–miRNA associations. In this article, we developed a computational model of sparse learning and heterogeneous graph inference for small molecule–miRNA association prediction (SLHGISMMA). Initially, the sparse learning method (SLM) was implemented to decompose the SM–miRNA adjacency matrix. Then, we integrated the reacquired association information together with the similarity information of SMs and miRNAs into a heterogeneous graph to infer potential SM–miRNA associations. Here, the main innovation of SLHGISMMA lies in the introduction of SLM to eliminate noises of the original adjacency matrix to some extent, which plays an important role in performance improvement. In addition, to assess SLHGISMMA’ performance, four different kinds of cross-validations were performed based on two datasets. As a result, based on dataset 1 (dataset 2), SLHGISMMA achieved area under the curves of 0.9273 (0.7774), 0.9365 (0.7973), 0.7703 (0.6556), and 0.9241 ± 0.0052 (0.7724 ± 0.0032) in global leave-one-out cross-validation (LOOCV), miRNA-fixed local LOOCV, SM-fixed local LOOCV, and 5-fold cross-validation, respectively. Moreover, in the case study on three important SMs via removing their known associations, the results showed that most of the top 50 predicted miRNAs were confirmed by the database SM2miR v1.0 or the experimental literature." @default.
- W2946952196 created "2019-06-07" @default.
- W2946952196 creator A5003562805 @default.
- W2946952196 creator A5027613930 @default.
- W2946952196 creator A5036210249 @default.
- W2946952196 creator A5040628447 @default.
- W2946952196 creator A5063862193 @default.
- W2946952196 date "2019-05-28" @default.
- W2946952196 modified "2023-10-01" @default.
- W2946952196 title "Prediction of Small Molecule–MicroRNA Associations by Sparse Learning and Heterogeneous Graph Inference" @default.
- W2946952196 cites W144423133 @default.
- W2946952196 cites W1889514258 @default.
- W2946952196 cites W1968682237 @default.
- W2946952196 cites W1972694236 @default.
- W2946952196 cites W1975441976 @default.
- W2946952196 cites W1978839489 @default.
- W2946952196 cites W1979537657 @default.
- W2946952196 cites W1980129409 @default.
- W2946952196 cites W1984328540 @default.
- W2946952196 cites W1989872688 @default.
- W2946952196 cites W2013842709 @default.
- W2946952196 cites W2039768402 @default.
- W2946952196 cites W2047967134 @default.
- W2946952196 cites W2064222302 @default.
- W2946952196 cites W2067735292 @default.
- W2946952196 cites W2073618374 @default.
- W2946952196 cites W2074370114 @default.
- W2946952196 cites W2080424200 @default.
- W2946952196 cites W2081386963 @default.
- W2946952196 cites W2083381199 @default.
- W2946952196 cites W2087975583 @default.
- W2946952196 cites W2106210472 @default.
- W2946952196 cites W2107101690 @default.
- W2946952196 cites W2109115947 @default.
- W2946952196 cites W2111802516 @default.
- W2946952196 cites W2113072832 @default.
- W2946952196 cites W2116439283 @default.
- W2946952196 cites W2117391818 @default.
- W2946952196 cites W2123602182 @default.
- W2946952196 cites W2124578478 @default.
- W2946952196 cites W2126374067 @default.
- W2946952196 cites W2127553917 @default.
- W2946952196 cites W2128768066 @default.
- W2946952196 cites W2135314242 @default.
- W2946952196 cites W2137052779 @default.
- W2946952196 cites W2138664009 @default.
- W2946952196 cites W2152970345 @default.
- W2946952196 cites W2153210075 @default.
- W2946952196 cites W2160467221 @default.
- W2946952196 cites W2162674813 @default.
- W2946952196 cites W2163169932 @default.
- W2946952196 cites W2168793364 @default.
- W2946952196 cites W2183717576 @default.
- W2946952196 cites W2252843509 @default.
- W2946952196 cites W2257870527 @default.
- W2946952196 cites W2259538443 @default.
- W2946952196 cites W2318932315 @default.
- W2946952196 cites W2339224094 @default.
- W2946952196 cites W2339718724 @default.
- W2946952196 cites W2346732397 @default.
- W2946952196 cites W2395168605 @default.
- W2946952196 cites W2443187137 @default.
- W2946952196 cites W2462108616 @default.
- W2946952196 cites W2470602054 @default.
- W2946952196 cites W2473876819 @default.
- W2946952196 cites W2511620854 @default.
- W2946952196 cites W2567465856 @default.
- W2946952196 cites W2588025094 @default.
- W2946952196 cites W2598152742 @default.
- W2946952196 cites W2605111099 @default.
- W2946952196 cites W2606619264 @default.
- W2946952196 cites W2765950793 @default.
- W2946952196 cites W2773303607 @default.
- W2946952196 cites W2780777007 @default.
- W2946952196 cites W2781702232 @default.
- W2946952196 cites W2799307902 @default.
- W2946952196 cites W2803696107 @default.
- W2946952196 cites W2803754980 @default.
- W2946952196 cites W2809363952 @default.
- W2946952196 cites W2888358121 @default.
- W2946952196 cites W2896829849 @default.
- W2946952196 cites W2899764141 @default.
- W2946952196 cites W2922420408 @default.
- W2946952196 cites W2942820662 @default.
- W2946952196 cites W3101634756 @default.
- W2946952196 cites W3146360245 @default.
- W2946952196 doi "https://doi.org/10.1021/acs.molpharmaceut.9b00384" @default.
- W2946952196 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31136190" @default.
- W2946952196 hasPublicationYear "2019" @default.
- W2946952196 type Work @default.
- W2946952196 sameAs 2946952196 @default.
- W2946952196 citedByCount "34" @default.
- W2946952196 countsByYear W29469521962019 @default.
- W2946952196 countsByYear W29469521962020 @default.
- W2946952196 countsByYear W29469521962021 @default.
- W2946952196 countsByYear W29469521962022 @default.
- W2946952196 countsByYear W29469521962023 @default.
- W2946952196 crossrefType "journal-article" @default.