Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947033529> ?p ?o ?g. }
- W2947033529 endingPage "105" @default.
- W2947033529 startingPage "90" @default.
- W2947033529 abstract "Abstract Sensor networks, as a promising network paradigm, have been widely applied in a great deal of critical real-world applications. A key challenge in sensor networks is how to improve and optimize coverage quality which is a fundamental metric to characterize how well a point or a region or a barrier can be sensed by the geographically deployed heterogeneous sensors. Because of the resource-limited, battery-powered and type-diverse features of the sensors, maintaining and optimizing coverage quality includes a significant amount of challenges in heterogeneous sensor networks. Many researchers from both academic and industrial communities have performed numerous significant works on coverage optimization problem in the past decades. Some of them also have surveyed the current models, theories and solutions on the problem of coverage optimization. However, most of the existing surveys and analytical studies ignore how to exploit data fusion and cooperation of the deployed sensors to enhance coverage performance. In this paper, we provide an insightful and comprehensive summarization and classification on the data fusion based coverage optimization problem and techniques. Aiming at overcoming the shortcomings existed in current solutions, we also discuss the future issues and challenges in this area and sketch a general research framework in the context of reinforcement learning." @default.
- W2947033529 created "2019-06-07" @default.
- W2947033529 creator A5001543147 @default.
- W2947033529 creator A5015720249 @default.
- W2947033529 creator A5020035945 @default.
- W2947033529 creator A5037144027 @default.
- W2947033529 creator A5044544898 @default.
- W2947033529 creator A5080751595 @default.
- W2947033529 date "2019-12-01" @default.
- W2947033529 modified "2023-10-17" @default.
- W2947033529 title "Data fusion based coverage optimization in heterogeneous sensor networks: A survey" @default.
- W2947033529 cites W1964755854 @default.
- W2947033529 cites W1964949845 @default.
- W2947033529 cites W1968676143 @default.
- W2947033529 cites W1972344647 @default.
- W2947033529 cites W1973580813 @default.
- W2947033529 cites W1979671171 @default.
- W2947033529 cites W1982145750 @default.
- W2947033529 cites W1995213322 @default.
- W2947033529 cites W1997419346 @default.
- W2947033529 cites W1998697412 @default.
- W2947033529 cites W2002139346 @default.
- W2947033529 cites W2002244268 @default.
- W2947033529 cites W2010518179 @default.
- W2947033529 cites W2010739835 @default.
- W2947033529 cites W2015602718 @default.
- W2947033529 cites W2020578866 @default.
- W2947033529 cites W2021601667 @default.
- W2947033529 cites W2023723080 @default.
- W2947033529 cites W2033076414 @default.
- W2947033529 cites W2044049786 @default.
- W2947033529 cites W2044195080 @default.
- W2947033529 cites W2046376809 @default.
- W2947033529 cites W2051203241 @default.
- W2947033529 cites W2060715188 @default.
- W2947033529 cites W2072329063 @default.
- W2947033529 cites W2073600756 @default.
- W2947033529 cites W2077297105 @default.
- W2947033529 cites W2077582647 @default.
- W2947033529 cites W2078882488 @default.
- W2947033529 cites W2079210359 @default.
- W2947033529 cites W2080191567 @default.
- W2947033529 cites W2083852337 @default.
- W2947033529 cites W2083904291 @default.
- W2947033529 cites W2084252951 @default.
- W2947033529 cites W2092958856 @default.
- W2947033529 cites W2096813891 @default.
- W2947033529 cites W2099995592 @default.
- W2947033529 cites W2100673911 @default.
- W2947033529 cites W2103452965 @default.
- W2947033529 cites W2104523419 @default.
- W2947033529 cites W2104784137 @default.
- W2947033529 cites W2107726111 @default.
- W2947033529 cites W2113913422 @default.
- W2947033529 cites W2122084979 @default.
- W2947033529 cites W2127765296 @default.
- W2947033529 cites W2127843168 @default.
- W2947033529 cites W2128376458 @default.
- W2947033529 cites W2130403046 @default.
- W2947033529 cites W2139975881 @default.
- W2947033529 cites W2142926494 @default.
- W2947033529 cites W2150397151 @default.
- W2947033529 cites W2154371512 @default.
- W2947033529 cites W2157633675 @default.
- W2947033529 cites W2158989627 @default.
- W2947033529 cites W2160118395 @default.
- W2947033529 cites W2160759230 @default.
- W2947033529 cites W2165035730 @default.
- W2947033529 cites W2165675317 @default.
- W2947033529 cites W2237932506 @default.
- W2947033529 cites W2291888299 @default.
- W2947033529 cites W2292354461 @default.
- W2947033529 cites W2293822418 @default.
- W2947033529 cites W2315526458 @default.
- W2947033529 cites W2321108298 @default.
- W2947033529 cites W2328195623 @default.
- W2947033529 cites W2335338051 @default.
- W2947033529 cites W2343892570 @default.
- W2947033529 cites W2377347848 @default.
- W2947033529 cites W2406290104 @default.
- W2947033529 cites W2467777018 @default.
- W2947033529 cites W2511736272 @default.
- W2947033529 cites W2514607034 @default.
- W2947033529 cites W2544042564 @default.
- W2947033529 cites W2552274133 @default.
- W2947033529 cites W2564463886 @default.
- W2947033529 cites W2570933547 @default.
- W2947033529 cites W2586472645 @default.
- W2947033529 cites W2590816369 @default.
- W2947033529 cites W2592144640 @default.
- W2947033529 cites W2592211823 @default.
- W2947033529 cites W2592773292 @default.
- W2947033529 cites W2599418331 @default.
- W2947033529 cites W2604152818 @default.
- W2947033529 cites W2605538937 @default.
- W2947033529 cites W2616434112 @default.
- W2947033529 cites W2622621205 @default.
- W2947033529 cites W2624621236 @default.