Matches in SemOpenAlex for { <https://semopenalex.org/work/W2947072771> ?p ?o ?g. }
- W2947072771 abstract "Convolutional neural networks (CNNs)-based no-reference image quality assessment (NR-IQA) suffers from insufficient training data. The conventional solution is splitting the training image into patches, assigning each patch the quality score, while the assignment of patch score is not consistent with the human visual system (HVS) well. To address the problem, we propose a patch quality assignment strategy, introducing the weighting map to describe the degree of visual importance of each distorted pixel, integrating the weighting map and the feature map to pool the quality score of each patch. With the patch quality, a CNNs-based NR-IQA model is trained. Experimental results demonstrate that proposed method, named as blind image quality metric with improved patch score (BIQIPS), improves the performance on most of the distortion types, especially on the types of local distortions, and achieves state-of-the-art prediction accuracy among the NR-IQA metrics." @default.
- W2947072771 created "2019-06-07" @default.
- W2947072771 creator A5026374834 @default.
- W2947072771 creator A5037727301 @default.
- W2947072771 creator A5081143722 @default.
- W2947072771 creator A5083303848 @default.
- W2947072771 date "2019-01-01" @default.
- W2947072771 modified "2023-09-26" @default.
- W2947072771 title "A Deep Blind Image Quality Assessment with Visual Importance Based Patch Score" @default.
- W2947072771 cites W1580932091 @default.
- W2947072771 cites W1982471090 @default.
- W2947072771 cites W2015196405 @default.
- W2947072771 cites W2035713052 @default.
- W2947072771 cites W2051596736 @default.
- W2947072771 cites W2068943123 @default.
- W2947072771 cites W2080369988 @default.
- W2947072771 cites W2102166818 @default.
- W2947072771 cites W2133665775 @default.
- W2947072771 cites W2141983208 @default.
- W2947072771 cites W2155893237 @default.
- W2947072771 cites W2162220380 @default.
- W2947072771 cites W2163370434 @default.
- W2947072771 cites W2194775991 @default.
- W2947072771 cites W2473697052 @default.
- W2947072771 cites W2518488994 @default.
- W2947072771 cites W2518824170 @default.
- W2947072771 cites W2566149141 @default.
- W2947072771 cites W2676303985 @default.
- W2947072771 cites W2737134362 @default.
- W2947072771 cites W2963975576 @default.
- W2947072771 cites W2964065910 @default.
- W2947072771 cites W3100498948 @default.
- W2947072771 doi "https://doi.org/10.1007/978-3-030-20890-5_10" @default.
- W2947072771 hasPublicationYear "2019" @default.
- W2947072771 type Work @default.
- W2947072771 sameAs 2947072771 @default.
- W2947072771 citedByCount "0" @default.
- W2947072771 crossrefType "book-chapter" @default.
- W2947072771 hasAuthorship W2947072771A5026374834 @default.
- W2947072771 hasAuthorship W2947072771A5037727301 @default.
- W2947072771 hasAuthorship W2947072771A5081143722 @default.
- W2947072771 hasAuthorship W2947072771A5083303848 @default.
- W2947072771 hasConcept C115961682 @default.
- W2947072771 hasConcept C126780896 @default.
- W2947072771 hasConcept C126838900 @default.
- W2947072771 hasConcept C138885662 @default.
- W2947072771 hasConcept C153180895 @default.
- W2947072771 hasConcept C154945302 @default.
- W2947072771 hasConcept C160633673 @default.
- W2947072771 hasConcept C162324750 @default.
- W2947072771 hasConcept C176217482 @default.
- W2947072771 hasConcept C183115368 @default.
- W2947072771 hasConcept C194257627 @default.
- W2947072771 hasConcept C21547014 @default.
- W2947072771 hasConcept C2776257435 @default.
- W2947072771 hasConcept C2776401178 @default.
- W2947072771 hasConcept C2779346075 @default.
- W2947072771 hasConcept C31258907 @default.
- W2947072771 hasConcept C31972630 @default.
- W2947072771 hasConcept C41008148 @default.
- W2947072771 hasConcept C41895202 @default.
- W2947072771 hasConcept C55020928 @default.
- W2947072771 hasConcept C71924100 @default.
- W2947072771 hasConcept C81363708 @default.
- W2947072771 hasConceptScore W2947072771C115961682 @default.
- W2947072771 hasConceptScore W2947072771C126780896 @default.
- W2947072771 hasConceptScore W2947072771C126838900 @default.
- W2947072771 hasConceptScore W2947072771C138885662 @default.
- W2947072771 hasConceptScore W2947072771C153180895 @default.
- W2947072771 hasConceptScore W2947072771C154945302 @default.
- W2947072771 hasConceptScore W2947072771C160633673 @default.
- W2947072771 hasConceptScore W2947072771C162324750 @default.
- W2947072771 hasConceptScore W2947072771C176217482 @default.
- W2947072771 hasConceptScore W2947072771C183115368 @default.
- W2947072771 hasConceptScore W2947072771C194257627 @default.
- W2947072771 hasConceptScore W2947072771C21547014 @default.
- W2947072771 hasConceptScore W2947072771C2776257435 @default.
- W2947072771 hasConceptScore W2947072771C2776401178 @default.
- W2947072771 hasConceptScore W2947072771C2779346075 @default.
- W2947072771 hasConceptScore W2947072771C31258907 @default.
- W2947072771 hasConceptScore W2947072771C31972630 @default.
- W2947072771 hasConceptScore W2947072771C41008148 @default.
- W2947072771 hasConceptScore W2947072771C41895202 @default.
- W2947072771 hasConceptScore W2947072771C55020928 @default.
- W2947072771 hasConceptScore W2947072771C71924100 @default.
- W2947072771 hasConceptScore W2947072771C81363708 @default.
- W2947072771 hasLocation W29470727711 @default.
- W2947072771 hasOpenAccess W2947072771 @default.
- W2947072771 hasPrimaryLocation W29470727711 @default.
- W2947072771 hasRelatedWork W2118207106 @default.
- W2947072771 hasRelatedWork W2518488994 @default.
- W2947072771 hasRelatedWork W2539553977 @default.
- W2947072771 hasRelatedWork W2566143488 @default.
- W2947072771 hasRelatedWork W2748449184 @default.
- W2947072771 hasRelatedWork W2792845633 @default.
- W2947072771 hasRelatedWork W2800765012 @default.
- W2947072771 hasRelatedWork W2887815998 @default.
- W2947072771 hasRelatedWork W2891657016 @default.
- W2947072771 hasRelatedWork W2910370465 @default.
- W2947072771 hasRelatedWork W2916657425 @default.